Compliant mechanisms find use in numerous applications in both microscale and macroscale devices. Most of the current compliant mechanisms base their behavior on beam flexures. Their range of motion is thus limited by the stresses developed upon deflection. Conversely, the proposed mechanism relies on elastically nonlinear components to achieve large deformations. These nonlinear elements are composite morphing double-helical structures that are able to extend and coil like springs, yet, with nonlinear stiffness characteristics. A mechanism consisting of such structures, assembled in a simple truss configuration, is explored. A variety of behaviors is unveiled that could be exploited to expand the design space of current compliant mechanisms. The type of behavior is found to depend on the initial geometry of the structural assembly, the lay-up, and other characteristics specific of the composite components.

References

1.
Hao
,
G.
,
Yu
,
J.
, and
Li
,
H.
,
2016
, “
A Brief Review on Nonlinear Modelling Methods and Applications of Compliant Mechanisms
,”
Front. Mech. Eng.
,
11
(
2
), pp.
119
128
.
2.
Kim
,
C. J.
,
Kota
,
S.
, and
Moon
,
Y.-M.
,
2006
, “
An Instant Center Approach Toward the Conceptual Design of Compliant Mechanisms
,”
ASME J. Mech. Des.
,
128
(
3
), pp.
542
550
.
3.
Hu
,
Y. H.
,
Lin
,
K. H.
,
Chang
,
S. C.
, and
Chang
,
M.
,
2008
, “
Design of a Compliant Micromechanism for Optical-Fiber Alignment
,”
Key Eng. Mat.
,
381–382
, pp.
141
144
.
4.
Sung
,
E.
,
Slocum
,
A. H.
,
Ma
,
R.
,
Bean
,
J. F.
, and
Culpepper
,
M. L.
,
2011
, “
Design of an Ankle Rehabilitation Device Using Compliant Mechanisms
,”
ASME J. Med. Device
,
5
(
1
), p.
011001
.
5.
Wilcox
,
D. L.
, and
Howell
,
L. L.
,
2005
, “
Fully Compliant Tensural Bistable Micromechanisms (FTBM)
,”
IEEE J. Microelectromech. Syst.
,
14
(
6
), pp.
1223
1235
.
6.
Aten
,
Q. T.
,
Jensen
,
B. D.
,
Burnett
,
S. H.
, and
Howell
,
L. L.
,
2014
, “
A Self-Reconfiguring Metamorphic Nanoinjector for Injection Into Mouse Zygotes
,”
Rev. Sci. Instrum.
,
85
(
5
), p.
055005
.
7.
Nelson
,
T. G.
,
Lang
,
R. J.
,
Pehrson
,
N. A.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2016
, “
Facilitating Deployable Mechanisms and Structures via Developable Lamina Emergent Arrays
,”
ASME J. Mech. Robot.
,
8
(
3
), p.
031006
.
8.
Fowler
,
R. M.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2011
, “
Compliant Space Mechanisms: A New Frontier for Compliant Mechanisms
,”
Mech. Sci.
,
2
(
2
), pp.
205
215
.
9.
Pellegrini
,
S. P.
,
Tolou
,
N.
,
Schenk
,
M.
, and
Herder
,
J. L.
,
2013
, “
Bistable Vibration Energy Harvesters: A Review
,”
J. Intel. Mat. Syst. Str.
,
24
(
11
), pp.
1303
1312
.
10.
Shaw
,
A. D.
,
Neild
,
S. A.
,
Wagg
,
D. J.
,
Weaver
,
P. M.
, and
Carrella
,
A.
,
2013
, “
A Nonlinear Spring Mechanism Incorporating a Bistable Composite Plate for Vibration Isolation
,”
J. Sound. Vib.
,
332
(
24
), pp.
6265
6275
.
11.
Rivlin
,
B.
, and
Elata
,
D.
,
2012
, “
Design of Nonlinear Springs for Attaining a Linear Response in gap-Closing Electrostatic Actuators
,”
Int. J. Solids Struct.
,
49
(
26
), pp.
3816
3822
.
12.
Torrealba
,
R. R.
, and
Udelman
,
S. B.
,
2016
, “
Design of Cam Shape for Maximum Stiffness Variability on a Novel Compliant Actuator Using Differential Evolution
,”
Mech. Mach. Theory
,
95
, pp.
114
124
.
13.
Trease
,
B. P.
,
Moon
,
Y.-M.
, and
Kota
,
S.
,
2005
, “
Design of Large-Displacement Compliant Joints
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
788
798
.
14.
Lachenal
,
X.
,
Weaver
,
P. M.
, and
Daynes
,
S.
,
2014
, “
Influence of Transverse Curvature on the Stability of Pre-Stressed Helical Structures
,”
Int. J. Solids Struct.
,
51
(
13
), pp.
2479
2490
.
15.
Lachenal
,
X.
,
Weaver
,
P. M.
, and
Daynes
,
S.
,
2012
, “
Multi-Stable Composite Twisting Structure for Morphing Applications
,”
Proc. R Soc. A Math. Phys. Eng. Sci.
,
468
(
2141
), p.
123051
.
16.
Fleck
,
N. A.
,
Deshpande
,
V. S.
, and
Ashby
,
M. F.
,
2010
, “
Micro-Architectured Materials: Past, Present and Future
,”
Proc. R Soc. A Math. Phys. Eng. Sci.
,
466
(
2121
), pp.
2495
2516
.
17.
Vigliotti
,
A.
, and
Pasini
,
D.
,
2012
, “
Stiffness and Strength of Tridimensional Periodic Lattices
,”
Comput. Methods Appl. Mech. Eng.
,
229–232
, pp.
27
43
.
18.
Haghpanah
,
B.
,
Salari-Sharif
,
L.
,
Pourrajab
,
P.
,
Hopkins
,
J.
, and
Valdevit
,
L.
,
2016
, “
Multistable Shape-Reconfigurable Architected Materials
,”
Adv. Mater.
,
28
(
36
), pp.
7915
7920
.
19.
Cappello
,
L.
,
Lachenal
,
X.
,
Pirrera
,
A.
,
Mattioni
,
F.
,
Weaver
,
P. M.
, and
Masia
,
L.
,
2014
, “
Design, Characterization and Stability Test of a Multistable Composite Compliant Actuator for Exoskeletons
,”
5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics
,
Sao Paulo, Brazil
,
Aug. 12–15
, pp.
1051
1056
.
20.
Kollar
,
L. P.
, and
Springer
,
G. S.
,
2003
,
Mechanics of Composite Structures
,
Cambridge University Press
,
Cambridge, UK
.
21.
Giomi
,
L.
, and
Mahadevan
,
L.
,
2011
, “
Multistability of Free Spontaneously-Curved Anisotropic Strips
,”
Proc. R Soc. A Math. Phys. Eng. Sci.
,
468
(
2138
), pp.
511
530
.
22.
Aza
,
C.
,
Pirrera
,
A.
, and
Schenk
,
M.
,
2018
, “
Reconfigurable Trusses of Nonlinear Morphing Elements
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE2018)
,
Quebec City, Quebec, Canada
,
Aug. 26–29
, Paper No. DETC2018-85911.
23.
Radaelli
,
G.
,
Gallego
,
J. A.
, and
Herder
,
J. L.
,
2011
, “
An Energy Approach to Static Balancing of Systems With Torsion Stiffness
,”
ASME J. Mech. Des.
,
133
(
9
), p.
091006
.
24.
Bazant
,
Z. P.
, and
Cedolin
,
L.
,
2010
,
Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories
, 3rd ed.,
World Scientific Publishing
,
Singapore
.
25.
Galishnikova
,
V.
,
Dunaiski
,
P.
, and
Pahl
,
P. J.
,
2009
,
Geometrically Nonlinear Analysis of Plane Trusses and Frames
,
SUN MeDIA
,
Stellenbosch, South Africa
.
26.
Oh
,
Y. S.
, and
Kota
,
S.
,
2009
, “
Synthesis of Multistable Equilibrium Compliant Mechanisms Using Combinations of Bistable Mechanisms
,”
ASME J. Mech. Des.
,
131
(
2
), p.
021002
.
27.
Crisfield
,
M. A.
,
1981
, “
A Fast Incremental/Iterative Solution Procedure That Handles “Snap-Through”
,”
Comput. Struct.
,
13
(
1–3
), pp.
55
62
.
28.
Reddy
,
J. N.
,
2015
,
An Introduction to Nonlinear Finite Element Analysis: With Applications to Heat Transfer, Fluid Mechanics, and Solid Mechanics
, 2nd ed.,
Oxford University Press
,
Oxford
, UK.
29.
Wagner
,
W.
, and
Wriggers
,
P.
,
1988
, “
A Simple Method for the Calculation of Postcritical Branches
,”
Eng. Comput.
,
5
(
2
), pp.
103
109
.
30.
Wriggers
,
P.
, and
Simo
,
J. C.
,
1990
, “
A General Procedure for the Direct Computation of Turning and Bifurcation Points
,”
Int. J. Numer. Meth. Eng.
,
30
(
1
), pp.
155
176
.
31.
Chen
,
G.
,
Aten
,
Q. T.
,
Zirbel
,
S.
,
Jensen
,
B. D.
, and
Howell
,
L. L.
,
2010
, “
A Tristable Mechanism Configuration Employing Orthogonal Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
2
(
1
), p.
014501
.
32.
Radaelli
,
G.
, and
Herder
,
J. L.
,
2016
, “
A Monolithic Compliant Large-Range Gravity Balancer
,”
Mech. Mach. Theory
,
102
, pp.
55
67
.
You do not currently have access to this content.