This paper investigates reconfiguration of metamorphic mechanisms as a typical character of topological change of the mechanisms. Metamorphic mechanisms with reconfigurable topology provide changed topological states and subsequently change the mobility to give various subphase mechanisms. This paper investigates the built-in spatial modules extended with metamorphic characteristics to develop a metamorphosis operation based on building blocks in the form of spatial kinematic pairs and associated links. The composition principle of a metamorphic mechanism gives the mechanism characteristics and generates subphase working mechanisms. These working mechanisms change and develop into different forms in an evolutionary process of topological change and the proposed module composition principle in metamorphic mechanisms leads to the development of module topology variation and reconfiguration operations based on algebraic properties of Lie displacement-subgroup. The topology transformation is further used for configuration aggregation and degeneration and all the linkage operations are based on set theoretic, leading to topological reconfiguration of metamorphic mechanisms that maps a source metamorphic mechanism into various subphase configurations. This paper demonstrates the principle with case studies from a metamorphic mechanism generator to subphase mechanisms and vice versa.

1.
Dai
,
J. S.
, and
Rees-Jones
,
J.
, 1998, “
Mobility in Metamorphic Mechanisms of Foldable∕Erectable Kinds
,”
Proceedings of the 25th ASME Biennial Mechanisms and Robotics Conference
,
Atlanta, GA
, Sept.
2.
Zhang
,
L. P.
,
Wang
,
D. L.
, and
Dai
,
J. S.
, 2008, “
Biological Modeling and Evolution Based Synthesis of Metamorphic Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
130
(
7
), p.
072303
.
3.
Rodriguez-Leal
,
E.
, and
Dai
,
J. S.
, 2007, “
From Origami to a New Class of Centralized 3-DOF Parallel Mechanisms
,”
Proceedings of the ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Las Vegas, NV
, Sept.
4.
Chen
,
I. M.
,
Li
,
S. H.
, and
Cathala
,
A.
, 2003, “
Mechatronic Design and Locomotion of Amoebot—A Metamorphic Underwater Vehicle
,”
J. Rob. Syst.
0741-2223,
20
(
6
), pp.
307
314
.
5.
Wohlhart
,
K.
, 1996, “
Kinematotropic Linkages
,” in
Recent Advances in Robot Kinematics
,
J.
Lenarcic
and
V.
Parenti-Castelli
eds.,
Kluwer
,
Dordrecht, The Netherlands
, pp.
359
368
.
6.
Parise
,
J. J.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
, 2000, “
Ortho-Planar Mechanisms
,”
Proceedings of the 26th Biennial Mechanisms and Robotics Conference
,
Baltimore, MD
, Paper No. DETC2000∕MECH-14193.
7.
Lusk
,
C. P.
, and
Howell
,
L. L.
, 2006, “
Design Space of Single-Loop Planar Folded Micro Mechanisms With Out-of-Plane Motion
,”
ASME J. Mech. Des.
1050-0472,
128
(
5
), pp.
1092
1100
.
8.
Galletti
,
C.
, and
Fanghella
,
P.
, 2001, “
Single-Loop Kinematotropic Mechanisms
,”
Mech. Mach. Theory
0094-114X,
36
(
6
), pp.
743
761
.
9.
Liu
,
C.
, and
Yang
,
T.
, 2004, “
Essence and Characteristics of Metamorphic Mechanisms and Their Metamorphic Ways
,”
Proceedings of the 11th World Congress in Mechanism and Machine Science
,
Tianjin, China
, Apr., pp.
1285
1288
.
10.
Carroll
,
D. W.
,
Magleby
,
S. P.
,
Howell
,
L. H.
,
Todd
,
R. H.
, and
Lusk
,
C. P.
, 2005, “
Simplified Manufacturing Through a Metamorphic Process for Compliant Ortho-Planar Mechanisms
,”
Proceeding of the 2005 ASME International Mechanical Engineering Congress and Exposition
,
Orlando, FL
, Nov.
11.
Yan
,
H. S.
, and
Kuo
,
C. H.
, 2006, “
Topological Representations and Characteristics of Variable Kinematic Joints
,”
ASME J. Mech. Des.
1050-0472,
128
(
2
), pp.
384
391
.
12.
Kuo
,
C. H.
, and
Yan
,
H. S.
, 2007, “
On the Mobility and Configuration Singularity of Mechanisms With Variable Topologies
,”
ASME J. Mech. Des.
1050-0472,
129
(
6
), pp.
617
624
.
13.
Hervé
,
J. M.
, 1999, “
The Lie Group of Rigid Body Displacements, a Fundamental Tool for Mechanism Design
,”
Mech. Mach. Theory
0094-114X,
34
(
5
), pp.
719
730
.
14.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
, 2004, “
Screw System Analysis of Parallel Mechanisms and Applications to Constraint and Mobility Study
,”
Proceedings of the 28th ASME Biennial Mechanisms and Robotics Conference
,
Salt Lake City, UT
, Sept., Paper No. DETC20040-57604.
15.
Hervé
,
J. M.
, 1978, “
Analyze structurelle des mécanismes par groupe des déplacements (in French)
,”
Mech. Mach. Theory
0094-114X,
13
, pp.
437
450
.
16.
Tsai
,
L. W.
, 1999, “
The Enumeration of a Class of Three-DOF Parallel Manipulators
,”
Proceedings of the Tenth World Congress on the Theory of Machines and Mechanisms
,
Oulu
, Vol.
3
, pp.
1121
1126
.
17.
Carricato
,
M.
, and
Parenti-Castelli
,
V.
, 2003, “
A Family of 3-DOF Translational Parallel Manipulators
,”
ASME J. Mech. Des.
1050-0472,
125
, pp.
302
307
.
18.
Gogu
,
G.
, 2004, “
Structural Synthesis of Fully-Isotropic Translational Parallel Robots Via Theory of Linear Transformations
,”
Eur. J. Mech. A/Solids
0997-7538,
23
, pp.
1021
1039
.
19.
Gibson
,
C. G.
, and
Hunt
,
K. H.
, 1990, “
Geometry of Screw Systems-2: Classification of Screw Systems
,”
Mech. Mach. Theory
0094-114X,
25
(
1
), pp.
11
27
.
20.
Dai
,
J. S.
, and
Rees
,
J. J.
, 2001, “
Interrelationship Between Screw Systems and Corresponding Reciprocal Systems and Applications
,”
Mech. Mach. Theory
0094-114X,
36
(
5
), pp.
633
651
.
21.
Zhao
,
T. S.
,
Dai
,
J. S.
, and
Huang
,
Z.
, 2002, “
Geometric Synthesis of Spatial Parallel Manipulators With Fewer Than Six Degrees of Freedom
,”
J. Mech. Eng. Sci.
0022-2542,
216
(
C12
), pp.
1175
1186
.
22.
Wang
,
D. L.
, and
Dai
,
J. S.
, 2007, “
Theoretical Foundation of Metamorphic Mechanism and Its Synthesis
,”
Chin. J. Mech. Eng.
0577-6686,
43
(
8
), pp.
32
42
.
23.
Pamecha
,
A.
, and
Chirikjian
,
G. S.
, 1996, “
A Useful Metric for Modular Robot Motion Planning
,”
Proceedings of the 1996 IEEE International Conference on Robotics and Automation
, pp.
442
447
.
24.
Lipson
,
H.
, 2006, “
A Relaxation Method for Simulating the Kinematics of Compound Nonlinear Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
128
(
4
), pp.
719
728
.
25.
Dai
,
J. S.
, 2006, “
An Historical Review of the Theoretical Development of Rigid Body Displacement From Rodrigues Parameters to the Finite Twist
,”
Mech. Mach. Theory
0094-114X,
41
(
1
), pp.
41
52
.
26.
Selig
,
J. M.
, 1996,
Geometrical Methods in Robotics
,
Springer-Verlag
,
Berlin
.
27.
Dai
,
J. S.
,
Holland
,
N.
, and
Kerr
,
D. R.
, 1995, “
Finite Twist Mapping and Its Application to Planar Serial Manipulators With Revolute Joints
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
209
(
3
), pp.
263
271
.
28.
Hrbacek
,
K.
, and
Jech
,
T.
, 1999,
Introduction to Set Theory
,
Dekker
,
New York
.
29.
Yang
,
T. L.
, and
Sun
,
D. J.
, 2008, “
Rank and Mobility of Single Loop Kinematic Chains
Proceedings of the ASME IDETC∕CIE 2008
,
New York City, NY
, Aug. 3–6.
30.
Yang
,
T. L.
, and
Sun
,
D. J.
, 2008, “
A General Formula of Degree of Freedom for Parallel Mechanisms
,”
Proceedings of the ASME IDETC∕CIE 2008
,
New York City, NY
, Aug. 3–6.
31.
Kong
,
X.
, and
Gosselin
,
C. M.
, 2004, “
Type Synthesis of 3-Dof Translational Parallel Manipulators Based on Screw Theory
,”
ASME J. Mech. Des.
1050-0472,
126
(
1
), pp.
93
100
.
32.
Kong
,
X.
, and
Gosselin
,
C. M.
, 2004, “
Type Synthesis of 3-DoF Spherical Parallel Manipulators Based on Screw Theory
ASME J. Mech. Des.
1050-0472,
126
(
1
), pp.
101
108
.
You do not currently have access to this content.