Abstract

This paper introduces a new computational framework for modeling and designing morphable surface structures based on an integrated approach that leverages circle packing for surface representation, conformal mapping to link local and global kinematics, and topology optimization for actuator design. The framework utilizes a unique strategy for employing optimized compliant actuators as the basic building blocks of the morphable surface. These actuators, designed as circular elements capable of modifying their radius and curvature, are optimized using level set topology optimization, considering both kinematic performance and structural stiffness. Circle packing is employed to represent the surface geometry, while conformal mapping guides the kinematic analysis, ensuring alignment between local actuator motions and desired global surface transformations. The design process involves mapping optimized component designs back onto the circle packing representation, facilitating coordinated control, and achieving harmony between local and global geometries. This leads to efficient actuation and enables precise control over the surface morphology. The effectiveness of the proposed framework is demonstrated through two numerical examples, showcasing its capability to design complex, morphable surfaces with potential applications in fields requiring dynamic shape adaptation.

References

1.
Liu
,
K.
,
Hacker
,
F.
, and
Daraio
,
C.
,
2021
, “
Robotic Surfaces With Reversible, Spatiotemporal Control for Shape Morphing and Object Manipulation
,”
Sci. Rob.
,
6
(
53
), p.
eabf5116
.
2.
Chen
,
Q.
,
Feng
,
F.
,
Lv
,
P.
, and
Duan
,
H.
,
2022
, “
Origami Spring-Inspired Shape Morphing for Flexible Robotics
,”
Soft Rob.
,
9
(
4
), pp.
798
806
.
3.
Ishida
,
M.
,
Drotman
,
D.
,
Shih
,
B.
,
Hermes
,
M.
,
Luhar
,
M.
, and
Tolley
,
M. T.
,
2019
, “
Morphing Structure for Changing Hydrodynamic Characteristics of a Soft Underwater Walking Robot
,”
IEEE Rob. Automat. Lett.
,
4
(
4
), pp.
4163
4169
.
4.
Belobaba
,
P.
,
Cooper
,
J.
,
Langton
,
R.
, and
Seabridge
,
A.
,
2012
,
Morphing Aerospace Vehicles and Structures
, Vol.
57
,
John Wiley & Sons
.
5.
Fasel
,
U.
,
Keidel
,
D.
,
Baumann
,
L.
,
Cavolina
,
G.
,
Eichenhofer
,
M.
, and
Ermanni
,
P.
,
2020
, “
Composite Additive Manufacturing of Morphing Aerospace Structures
,”
Manuf. Lett.
,
23
, pp.
85
88
.
6.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
1999
, “
Material Interpolation Schemes in Topology Optimization
,”
Arch. Appl. Mech.
,
69
, pp.
635
654
.
7.
Bendsoe
,
M. P.
, and
Sigmund
,
O.
,
2013
,
Topology Optimization: Theory, Methods, and Applications
,
Springer Science & Business Media
.
8.
Sigmund
,
O.
, and
Bondsgc
,
M.
,
2003
, “Topology Optimization,” State-of-the-Art and Future Perspectives, Technical University of Denmark (DTU), Copenhagen, Denmark.
9.
Luo
,
Z.
,
Wang
,
M. Y.
,
Wang
,
S.
, and
Wei
,
P.
,
2008
, “
A Level Set-Based Parameterization Method for Structural Shape and Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
76
(
1
), pp.
1
26
.
10.
Howell
,
L. L.
,
Magleby
,
S. P.
,
Olsen
,
B. M.
, and
Wiley
,
J.
,
2013
,
Handbook of Compliant Mechanisms
,
Wiley Online Library
.
11.
Smith
,
S. T.
,
2000
,
Flexures: Elements of Elastic Mechanisms
,
CRC Press
.
12.
Burns
,
R.
,
1966
, “
Structural Permutations of Flexible Link Mechanisms
,”
Mechanical Engineering
, Vol.
88
,
American Society of Mechanical Engineers
,
New York
, p.
84
.
13.
Paros
,
J.
,
1965
, “
Flexure Hinges
,”
Mach. Des.
,
37
, pp.
151
156
.
14.
Bruns
,
T. E.
, and
Tortorelli
,
D. A.
,
2001
, “
Topology Optimization of Non-Linear Elastic Structures and Compliant Mechanisms
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
26–27
), pp.
3443
3459
.
15.
Frecker
,
M.
,
Ananthasuresh
,
G.
,
Nishiwaki
,
S.
,
Kikuchi
,
N.
, and
Kota
,
S.
,
1997
, “Topological Synthesis of Compliant Mechanisms Using Multi-criteria Optimization.”
16.
Nishiwaki
,
S.
,
Frecker
,
M. I.
,
Min
,
S.
, and
Kikuchi
,
N.
,
1998
, “
Topology Optimization of Compliant Mechanisms Using the Homogenization Method
,”
Int. J. Numer. Methods Eng.
,
42
(
3
), pp.
535
559
.
17.
Sigmund
,
O.
,
1997
, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
J. Struct. Mech.
,
25
(
4
), pp.
493
524
.
18.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A.-M.
,
2004
, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method
,”
J. Comput. Phys.
,
194
(
1
), pp.
363
393
.
19.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
1–2
), pp.
227
246
.
20.
Kim
,
C. J.
,
Kota
,
S.
, and
Moon
,
Y.-M.
,
2006
, “An Instant Center Approach Toward the Conceptual Design of Compliant Mechanisms.”
21.
Wang
,
H. V.
,
2005
,
A Unit Cell Approach for Lightweight Structure and Compliant Mechanism
,
Georgia Institute of Technology
.
22.
Wang
,
S.
, and
Wang
,
M. Y.
,
2006
, “
Radial Basis Functions and Level Set Method for Structural Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
65
(
12
), pp.
2060
2090
.
23.
Jiang
,
L.
,
Chen
,
S.
, and
Jiao
,
X.
,
2018
, “
Parametric Shape and Topology Optimization: A New Level Set Approach Based on Cardinal Basis Functions
,”
Int. J. Numer. Methods Eng.
,
114
(
1
), pp.
66
87
.
24.
Dudek
,
K. K.
,
Martínez
,
J. A. I.
,
Ulliac
,
G.
, and
Kadic
,
M.
,
2022
, “
Micro-Scale Auxetic Hierarchical Mechanical Metamaterials for Shape Morphing
,”
Adv. Mater.
,
34
(
14
), p.
2110115
.
25.
Yao
,
Y.
,
Luo
,
Y.
,
Xu
,
Y.
,
Wang
,
B.
,
Li
,
J.
,
Deng
,
H.
, and
Lu
,
H.
,
2018
, “
Fabrication and Characterization of Auxetic Shape Memory Composite Foams
,”
Compos. Part B: Eng.
,
152
, pp.
1
7
.
26.
Tian
,
J.
,
Li
,
M.
,
Han
,
Z.
,
Chen
,
Y.
,
Gu
,
X. D.
,
Ge
,
Q.
, and
Chen
,
S.
,
2022
, “
Conformal Topology Optimization of Multi-material Ferromagnetic Soft Active Structures Using an Extended Level Set Method
,”
Comput. Methods Appl. Mech. Eng.
,
389
, p.
114394
.
27.
Luo
,
J.
,
Luo
,
Z.
,
Chen
,
S.
,
Tong
,
L.
, and
Wang
,
M. Y.
,
2008
, “
A New Level Set Method for Systematic Design of Hinge-Free Compliant Mechanisms
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
2
), pp.
318
331
.
28.
Tian
,
J.
,
Zhao
,
X.
,
Gu
,
X. D.
, and
Chen
,
S.
,
2020
, “
Designing Ferromagnetic Soft Robots (Ferrosoro) With Level-Set-Based Multiphysics Topology Optimization
,”
2020 IEEE International Conference on Robotics and Automation (ICRA)
,
Paris, France
, May 31-Aug. 31, pp.
10067
10074
.
29.
Wang
,
M. Y.
,
Chen
,
S.
,
Wang
,
X.
, and
Mei
,
Y.
,
2005
, “
Design of Multimaterial Compliant Mechanisms Using Level-Set Methods
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
941
956
.
30.
Xu
,
X.
,
Gu
,
X. D.
, and
Chen
,
S.
,
2022
, “
Shape and Topology Optimization of Conformal Thermal Control Structures on Free-Form Surfaces: A Dimension Reduction Level Set Method (DR-LSM)
,”
Comput. Methods Appl. Mech. Eng.
,
398
, p.
115183
.
31.
Ye
,
Q.
,
Guo
,
Y.
,
Chen
,
S.
,
Lei
,
N.
, and
Gu
,
X. D.
,
2019
, “
Topology Optimization of Conformal Structures on Manifolds Using Extended Level Set Methods (X-LSM) and Conformal Geometry Theory
,”
Comput. Methods Appl. Mech. Eng.
,
344
, pp.
164
185
.
32.
Xu
,
X.
,
Gu
,
X. D.
, and
Chen
,
S.
,
2023
, “
Topology Optimization of Thermal Cloaks in Euclidean Spaces and Manifolds Using an Extended Level Set Method
,”
Int. J. Heat Mass Transfer
,
202
, p.
123720
.
33.
Luo
,
Z.
,
Chen
,
L.
,
Yang
,
J.
,
Zhang
,
Y.
, and
Abdel-Malek
,
K.
,
2005
, “
Compliant Mechanism Design Using Multi-objective Topology Optimization Scheme of Continuum Structures
,”
Struct. Multidiscipl. Optim.
,
30
, pp.
142
154
.
34.
Gu
,
X. D.
, and
Yau
,
S. T.
,
2008
, “Computational Conformal Geometry.”
35.
Gu
,
D. X.
,
Luo
,
F.
, and
Yau
,
S.-T.
,
2010
, “
Fundamentals of Computational Conformal Geometry
,”
Math. Comput. Sci.
,
4
, pp.
389
429
.
36.
Stephenson
,
K.
,
2005
,
Introduction to Circle Packing: The Theory of Discrete Analytic Functions
,
Cambridge University Press
.
37.
Chow
,
B.
,
Chu
,
S.-C.
,
Glickenstein
,
D.
,
Guenther
,
C.
,
Isenberg
,
J.
,
Ivey
,
T.
,
Knopf
,
D.
,
Lu
,
P.
,
Luo
,
F.
, and
Ni
,
L.
,
2007
,
The Ricci Flow: Techniques and Applications
, Vol.,
135
,
American Mathematical Society Providence
.
38.
Koebe
,
P.
,
1936
,
Kontaktprobleme Der Konformen Abbildung
,
Hirzel
.
39.
Rodin
,
B.
, and
Sullivan
,
D.
,
1987
, “
The Convergence of Circle Packings to the Riemann Mapping
,”
J. Diff. Geom.
,
26
, pp.
349
360
.
40.
Hamilton
,
R. S.
,
1988
,
The Ricci Flow on Surfaces
,
Mathematics and General Relativity, Vol. 71 of Contemporary Mathematics
,
American Mathematical Society
,
Santa Cruz, CA
.
41.
Chow
,
B.
, and
Luo
,
F.
,
2003
, “
Combinatorial Ricci Flows on Surfaces
,”
J. Diff. Geom.
,
63
(
1
), pp.
97
129
.
42.
Thurston
,
W.
,
1978-1981
,
The Geometry and Topology of 3-Manifolds
,
Princeton Lecture Notes
.
43.
Weyl
,
H.
,
1916
, “
On the Embedding of Abstract Structures Into Euclidean Spaces
,”
Ann. Math.
,
17
(
3
), pp.
211
239
.
44.
Alexandrov
,
A. D.
,
1942
, “
Existence of a Convex Polyhedron and of a Convex Surface With a Given Metric
,”
Matematicheskii Sbornik, New Series
,
11
(
53
), pp.
15
65
.
45.
Izmestiev
,
I. A.
,
2008
, “
A Variational Proof of Alexandrov’s Convex Cap Theorem
,”
Dis. Comput. Geom.
,
40
, pp.
561
585
.
46.
Sethian
,
J. A.
, and
Wiegmann
,
A.
,
2000
, “
Structural Boundary Design Via Level Set and Immersed Interface Methods
,”
J. Comput. Phys.
,
163
(
2
), pp.
489
528
.
47.
Wang
,
M. Y.
, and
Wang
,
X.
,
2004
, “
“Color” Level Sets: A Multi-Phase Method for Structural Topology Optimization With Multiple Materials
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
6
), pp.
469
496
.
48.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A.-M.
,
2004
, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method
,”
J. Comput. Phys.
,
194
(
1
), pp.
363
393
.
49.
Osher
,
S.
, and
Fedkiw
,
R. P.
,
2001
, “
Level Set Methods: An Overview and Some Recent Results
,”
J. Comput. Phys.
,
169
(
2
), pp.
463
502
.
50.
Howell
,
L. L.
,
2013
, “
Compliant Mechanisms
,” 21st Century Kinematics: The 2012 NSF Workshop,
Springer
, pp.
189
216
.
51.
Gallego
,
J. A.
, and
Herder
,
J.
,
2009
, “
Synthesis Methods in Compliant Mechanisms: An Overview
,”
ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
San Diego, CA
, Aug. 30-Sept. 2, Vol. 49040, pp.
193
214
.
52.
Gao
,
L.
,
Zhu
,
X.
,
Tanaka
,
M.
,
Song
,
Y.
,
Zhou
,
Y.
,
Gu
,
X. D.
, and
Chen
,
S.
,
2024
, “
Geometry-Driven Design of Morphable Surface Structures Using Topology Optimization and Circle Packing
,”
ASME 2024 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Washington, DC
, Aug. 25–28, Vol. 88414, American Society of Mechanical Engineers, p. V007T07A037.
You do not currently have access to this content.