Abstract

Meeting the United Nations (UN) sustainable development goals efficiently requires designers and engineers to solve multi-objective optimization problems involving trade-offs between social, environmental, and economical impacts. This paper presents an approach for designers and engineers to quantify the social and environmental impacts of a product at a population level and then perform a trade-off analysis between those impacts. In this approach, designers and engineers define the attributes of the product as well as the materials and processes used in the product’s life cycle. Agent-based modeling (ABM) tools that have been developed to model the social impacts of products are combined with life cycle assessment (LCA) tools that have been developed to evaluate the pressures that different processes create on the environment. Designers and engineers then evaluate the trade-offs between impacts by finding non-dominated solutions that minimize environmental impacts while maximizing positive and/or minimizing negative social impacts. Product adoption models generated by ABM allow designers and engineers to approximate population level environmental impacts and avoid Simpson’s paradox, where a reversal in choices is preferred when looking at the population level impacts versus the individual product-level impacts. This analysis of impacts has the potential to help designers and engineers create more impactful products that aid in reaching the UN sustainable development goals.

References

1.
UN
,
2015
, “
Transforming Our World: The 2030 Agenda for Sustainable Development, Draft Resolution Referred to the United Nations Summit for the Adoption of the Post-2015 Development Agenda by the General Assembly at Its Sixty-Ninth Session
,” Tech. Rep., Sept., UN Doc. A/70/L.1,
United Nations General Assembly
.
2.
Johnson
,
G. E.
,
Fisher
,
M. J.
,
Salmon
,
J. L.
, and
Mattson
,
C. A.
,
2021
, “
Product Development Using Perceived Correlations Between the United Nations Sustainable Development Goals and Social Impact Categories
,”
Volume 5: 26th Design for Manufacturing and the Life Cycle Conference (DFMLC)
,
Virtual, Online
, p. V005T05A028.
3.
Sachs
,
J. D.
,
Schmidt-Traub
,
G.
,
Mazzucato
,
M.
,
Messner
,
D.
,
Nakicenovic
,
N.
, and
Rockström
,
J.
,
2019
, “
Six Transformations to Achieve the Sustainable Development Goals
,”
Nat. Sustain.
,
2
(
9
), pp.
805
814
.
4.
Mattson
,
C. A.
,
Pack
,
A. T.
,
Lofthouse
,
V.
, and
Bhamra
,
T.
,
2019
, “
Using a Product’s Sustainability Space as a Design Exploration Tool
,”
Des. Sci.
,
5
, p.
e1
.
5.
Mattson
,
C. A.
,
Mullur
,
A. A.
, and
Messac
,
A.
,
2004
, “
Smart Pareto Filter: Obtaining a Minimal Representation of Multiobjective Design Space
,”
Eng. Optim.
,
36
(
6
), pp.
721
740
.
6.
Miettinen
,
K.
,
2012
,
Nonlinear Multiobjective Optimization
,
Springer Science & Business Media
,
New York
.
7.
Mattson
,
C. A.
, and
Winter
,
A. G.
,
2016
, “
Why the Developing World Needs Mechanical Design
,”
ASME J. Mech. Des.
,
138
(
7
), p.
070301
.
8.
Burleson
,
G.
, and
Austin-Breneman
,
J.
,
2020
, “
Engineering for Global Development: Characterizing the Discipline Through a Systematic Literature Review
,”
ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 11B: 46th Design Automation Conference (DAC)
,
Online, Virtual
,
Aug. 17–19
.
9.
Vezzoli
,
C. A.
,
2018
,
Design for Environmental Sustainability
,
Springer
,
London
.
10.
Wackernagel
,
M.
, and
Beyers
,
B.
,
2019
,
Ecological Footprint: Managing Our Biocapacity Budget
,
New Society Publishers
(Sept. Google-Books-ID: WiiEDwAAQBAJ).
11.
Dutta
,
B. K.
, and
Bandyopadhyay
,
S.
,
2010
, “
Environmental Impact Assessment and Social Impact Assessment—Decision Making Tools for Project Appraisal in India
,”
Int. J. Human Soc. Sci.
,
5
(
6
), pp.
350
355
.
12.
Mattson
,
C. A.
,
Pack
,
A. T.
,
Lofthouse
,
V.
, and
Bhamra
,
T.
,
2019
, “
Using a Product’s Sustainability Space as a Design Exploration Tool
,”
Des. Sci.
,
5
.
13.
Umer
,
A.
,
Hewage
,
K.
,
Haider
,
H.
, and
Sadiq
,
R.
,
2017
, “
Sustainability Evaluation Framework for Pavement Technologies: An Integrated Life Cycle Economic and Environmental Trade-Off Analysis
,”
Transp. Res. D: Transp. Environ.
,
53
, pp.
88
101
.
14.
Mabey
,
C. S.
,
Armstrong
,
A. G.
,
Mattson
,
C. A.
,
Salmon
,
J. L.
,
Hatch
,
N. W.
, and
Dahlin
,
E. C.
,
2021
, “
A Computational Simulation-Based Framework for Estimating Potential Product Impact During Product Design
,”
Des. Sci.
,
7
.
15.
Verones
,
F.
,
Hellweg
,
S.
,
Antón
,
A.
,
Azevedo
,
L. B.
,
Chaudhary
,
A.
,
Cosme
,
N.
,
Cucurachi
,
S.
, et al.
2020
, “
LC-IMPACT: A Regionalized Life Cycle Damage Assessment Method
,”
J. Ind. Ecol.
,
24
(
6
), pp.
1201
1219
.
16.
Huijbregts
,
M. A. J.
,
Steinmann
,
Z. J. N.
,
Elshout
,
P. M. F.
,
Stam
,
G.
,
Verones
,
F.
,
Vieira
,
M.
,
Zijp
,
M.
,
Hollander
,
A.
, and
van Zelm
,
R.
,
2017
, “
ReCiPe2016: A Harmonised Life Cycle Impact Assessment Method at Midpoint and Endpoint Level
,”
Int. J. Life Cycle Assess.
,
22
(
2
), pp.
138
147
.
17.
Hellweg
,
S.
, and
Canals
,
L. M. I.
,
2014
, “
Emerging Approaches, Challenges and Opportunities in Life Cycle Assessment
,”
Science
,
344
(
6188
), pp.
1109
1113
.
18.
Bulle
,
C.
,
Margni
,
M.
,
Patouillard
,
L.
,
Boulay
,
A.-M.
,
Bourgault
,
G.
,
De Bruille
,
V.
,
Cao
,
V.
, et al.
2019
, “
Impact World+: A Globally Regionalized Life Cycle Impact Assessment Method
,”
Int. J. Life Cycle Assess.
,
24
(
9
), pp.
1653
1674
.
19.
Finnveden
,
G.
, and
Potting
,
J.
,
2014
, “Life Cycle Assessment,”
Encyclopedia of Toxicology
, 3rd ed.,
Wexler
,
P.
, ed.,
Academic Press
,
Oxford
, pp.
74
77
.
20.
Walzberg
,
J.
,
Dandres
,
T.
,
Merveille
,
N.
,
Cheriet
,
M.
, and
Samson
,
R.
,
2019
, “
Assessing Behavioural Change With Agent-Based Life Cycle Assessment: Application to Smart Homes
,”
Renew. Sustain. Energy Rev.
,
111
, pp.
365
376
.
21.
Miller
,
S. A.
,
Moysey
,
S.
,
Sharp
,
B.
, and
Alfaro
,
J.
,
2013
, “
A Stochastic Approach to Model Dynamic Systems in Life Cycle Assessment
,”
J. Ind. Ecol.
,
17
(
3
), pp.
352
362
.
22.
Querini
,
F.
, and
Benetto
,
E.
,
2014
, “
Agent-Based Modelling for Assessing Hybrid and Electric Cars Deployment Policies in Luxembourg and Lorraine
,”
Transp. Res. Part A Policy Pract.
,
70
, pp.
149
161
.
23.
Wang
,
B.
,
Brême
,
S.
, and
Moon
,
Y. B.
,
2014
, “
Hybrid Modeling and Simulation for Complementing Lifecycle Assessment
,”
Comput. Ind. Eng.
,
69
(
Mar.
), pp.
77
88
.
24.
Florent
,
Q.
, and
Enrico
,
B.
,
2015
, “
Combining Agent-Based Modeling and Life Cycle Assessment for the Evaluation of Mobility Policies
,”
Environ. Sci. Technol.
,
49
(
3
), pp.
1744
1751
.
25.
Bichraoui-Draper
,
N.
,
Xu
,
M.
,
Miller
,
S. A.
, and
Guillaume
,
B.
,
2015
, “
Agent-Based Life Cycle Assessment for Switchgrass-Based Bioenergy Systems
,”
Resour. Conserv. Recycl.
,
103
, pp.
171
178
.
26.
Micolier
,
A.
,
Loubet
,
P.
,
Taillandier
,
F.
, and
Sonnemann
,
G.
,
2019
, “
To What Extent Can Agent-Based Modelling Enhance a Life Cycle Assessment? Answers Based on a Literature Review
,”
J. Cleaner Prod.
,
239
, p.
118123
.
27.
Raihanian Mashhadi
,
A.
, and
Behdad
,
S.
,
2018
, “
Environmental Impact Assessment of the Heterogeneity in Consumers’ Usage Behavior: An Agent-Based Modeling Approach
,”
J. Ind. Ecol.
,
22
(
4
), pp.
706
719
.
28.
Davis
,
C.
,
Nikolić
,
I.
, and
Dijkema
,
G. P. J.
,
2009
, “
Integration of Life Cycle Assessment Into Agent-Based Modeling
,”
J. Ind. Ecol.
,
13
(
2
), pp.
306
325
.
29.
Walzberg
,
J.
,
Dandres
,
T.
,
Samson
,
R.
,
Merveille
,
N.
, and
Cheriet
,
M.
,
2017
, “
An Agent-Based Model to Evaluate Smart Homes Sustainability Potential
,”
2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)
,
Montreal, Quebec, Canada
, Oct. 8–13, pp.
1
7
.
30.
Hicks
,
A. L.
,
Theis
,
T. L.
, and
Zellner
,
M. L.
,
2015
, “
Emergent Effects of Residential Lighting Choices: Prospects for Energy Savings
,”
J. Ind. Ecol.
,
19
(
2
), pp.
285
295
.
31.
Wu
,
S. R.
,
Li
,
X.
,
Apul
,
D.
,
Breeze
,
V.
,
Tang
,
Y.
,
Fan
,
Y.
, and
Chen
,
J.
,
2017
, “
Agent-Based Modeling of Temporal and Spatial Dynamics in Life Cycle Sustainability Assessment
,”
J. Ind. Ecol.
,
21
(
6
), pp.
1507
1521
.
32.
Marvuglia
,
A.
,
Rege
,
S.
,
Navarrete Gutiérrez
,
T.
,
Vanni
,
L.
,
Stilmant
,
D.
, and
Benetto
,
E.
,
2017
, “
A Return on Experience From the Application of Agent-Based Simulations Coupled With Life Cycle Assessment to Model Agricultural Processes
,”
J. Cleaner Prod.
,
142
, pp.
1539
1551
.
33.
International Organization for Standardization
,
2006
,
Environmental Management: Life Cycle Assessment; Principles and Framework
,
ISO 14040
,
Paris
.
34.
Goedkoop
,
M.
, and
Spriensma
,
R.
,
1999
, “
The Eco-Indicator 99, Methodology Report. A Damage Oriented LCIA Method
,” The Hague.
35.
Huijbregts
,
M. A. J.
,
Steinmann
,
Z. J. N.
,
Elshout
,
P. M. F.
,
Stam
,
G.
,
Verones
,
F.
,
Vieira
,
M. D. M.
,
Hollander
,
A.
,
Zijp
,
M.
, and
van Zelm
,
R.
,
2016
, “
ReCiPe 2016 v1.1 A Harmonized Life Cycle Impact Assessment Method at Midpoint and Endpoint Level Report I: Characterization
,” Tech. Rep. RIVM Report 2016-0104a,
National Institute for Public Health and the Environment, Ministry of Health, Wellfare and Sport
.
36.
Goedkoop
,
M.
,
Heijungs
,
R.
,
Huijbregts
,
M.
,
Schryver
,
A. D.
,
Struijs
,
J.
, and
van Zelm
,
R.
,
2009
,
ReCiPe 2008 A Life Cycle Impact Assessment Method Which Comprises Harmonised Category Indicators at the Midpoint and the Endpoint Level
, 1st ed.,
Ministerie van VROM
,
Netherlands
.
37.
Andrews
,
E. S.
,
Barthel
,
L.-P.
,
Beck
,
T.
,
Benoit
,
C.
,
Ciroth
,
A.
,
Cucuzzella
,
C.
,
Gensch
,
C. -O.
, et al.,
2013
,
Guidelines for Social Life Cycle Assessment of Products
,
United Nations Environment Programme
,
Paris
.
38.
Wong
,
P. C.
, and
Thomas
,
J.
,
2004
, “
Guest Editors’ Introduction—Visual Analytics
,”
IEEE Comput. Graph. Appl.
,
24
(
5
), pp.
20
21
, PNNL-SA-41935.
39.
Unal
,
M.
,
Warn
,
G. P.
, and
Simpson
,
T. W.
,
2018
, “
Quantifying the Shape of Pareto Fronts During Multi-Objective Trade Space Exploration
,”
ASME J. Mech. Des.
,
140
(
2
), p.
021402
.
40.
Mattson
,
C. A.
, and
Messac
,
A.
,
2005
, “
Pareto Frontier Based Concept Selection Under Uncertainty, With Visualization
,”
Optim. Eng.
,
6
(
1
), pp.
85
115
.
41.
Messac
,
A.
,
Ismail-Yahaya
,
A.
, and
Mattson
,
C. A.
,
2003
, “
The Normalized Normal Constraint Method for Generating the Pareto Frontier
,”
Struct. Multidiscipl. Optim.
,
25
(
2
), pp.
86
98
.
42.
Peters
,
G.
,
Li
,
M.
, and
Lenzen
,
M.
,
2021
, “
The Need to Decelerate Fast Fashion in a Hot Climate—A Global Sustainability Perspective on the Garment Industry
,”
J. Cleaner Prod.
,
295
, p.
126390
.
43.
HealthDesk
,
2021
, “
How Are N95 Masks Made?
,” July, www.health-desk.org
44.
Lee
,
A. W. L.
,
Neo
,
E. R. K.
,
Khoo
,
Z.-Y.
,
Yeo
,
Z.
,
Tan
,
Y. S.
,
Chng
,
S.
,
Yan
,
W.
,
Lok
,
B. K.
, and
Low
,
J. S. C.
,
2021
, “
Life Cycle Assessment of Single-Use Surgical and Embedded Filtration Layer (EFL) Reusable Face Mask
,”
Resour. Conserv. Recycl.
,
170
, p.
105580
.
45.
Rodríguez
,
N. B.
,
Formentini
,
G.
,
Favi
,
C.
, and
Marconi
,
M.
,
2021
, “
Environmental Implication of Personal Protection Equipment in the Pandemic Era: LCA Comparison of Face Masks Typologies
,”
Procedia CIRP
,
98
, pp.
306
311
.
46.
Rauwendaal
,
C.
,
2022
, “
Tips and Techniques: Boosting Extrusion Productivity—Part III of III: Trim Your Material & Energy Costs
,” www.ptonline.com
47.
van der Velden
,
N. M.
,
Patel
,
M. K.
, and
Vogtlönder
,
J. G.
,
2014
, “
LCA Benchmarking Study on Textiles Made of Cotton, Polyester, Nylon, Acryl, or Elastane
,”
Int. J. Life Cycle Assess.
,
19
(
2
), pp.
331
356
.
48.
Howard
,
M. C.
,
2020
, “
Understanding Face Mask Use to Prevent Coronavirus and Other Illnesses: Development of a Multidimensional Face Mask Perceptions Scale
,”
Brit. J. Health Psychol.
,
25
(
4
), pp.
912
924
.
49.
Fischer
,
E. P.
,
Fischer
,
M. C.
,
Grass
,
D.
,
Henrion
,
I.
,
Warren
,
W. S.
, and
Westman
,
E.
,
2020
, “
Low-Cost Measurement of Face Mask Efficacy for Filtering Expelled Droplets During Speech
,”
Sci. Adv.
,
6
(
36
).
50.
Clapp
,
P. W.
,
Sickbert-Bennett
,
E. E.
,
Samet
,
J. M.
,
Berntsen
,
J.
,
Zeman
,
K. L.
,
Anderson
,
D. J.
,
Weber
,
D. J.
,
Bennett
,
W. D.
,
Epicenters
,
P.
, and
Program, U. S. C. F. D. C.
,
2021
, “
Evaluation of Cloth Masks and Modified Procedure Masks as Personal Protective Equipment for the Public During the COVID-19 Pandemic
,”
JAMA Int. Med.
,
181
(
4
), pp.
463
469
.
51.
Chen
,
W.
,
Hoyle
,
C.
, and
Wassenaar
,
H. J.
,
2013
, “Fundamentals of Analytical Techniques,”
Decision-Based Design
,
Springer
,
London
, pp.
35
77
.
52.
US Census Bureau
,
2020
, “American Community Survey (ACS),” https://www.census.gov/programs-surveys/acs, Accessed October, 8, 2020.
53.
United States Bureau of Labor Statistics
,
2020
, “
American Time Use Survey (ATUS): Arts Activities, [United States], 2003–2018
.”
54.
Igielnik
,
R.
,
2020
, “
Most Americans Say They Regularly Wore a Mask in Stores in the Past Month; Fewer See Others Doing It
,” Tech. Rep.,
Pew Research Center
.
55.
CDC
,
2020
, “
COVID-19 Pandemic Planning Scenarios
,” https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html
56.
He
,
L.
,
Wang
,
M.
,
Chen
,
W.
, and
Conzelmann
,
G.
,
2014
, “
Incorporating Social Impact on New Product Adoption in Choice Modeling: A Case Study in Green Vehicles
,”
Transp. Res. D Transp. Environ.
,
32
(
Part A
), pp.
421
434
.
57.
Ajzen
,
I.
,
1991
, “
The Theory of Planned Behavior
,”
Organ. Behav. Hum. Decis. Process.
,
50
(
2
), pp.
179
211
.
58.
Pakravan
,
M.
, and
MacCarty
,
N.
,
2021
, “
An Agent-Based Model for Adoption of Clean Technology Using the Theory of Planned Behavior
,”
ASME J. Mech. Des.
,
143
(
2
), p.
021402
.
59.
Stevenson
,
P. D.
,
2022
,
Methods for Engineers to Understand, Predict, and Influence the Social Impact of Products
,
Brigham Young University
,
Utah
.
60.
North
,
M. J.
, and
Macal
,
C. M.
,
2007
,
Managing Business Complexity: Discovering Strategic Solutions With Agent-Based Modeling and Simulation
,
Oxford University Press
,
Oxford, UK
.
61.
Haischer
,
M. H.
,
Beilfuss
,
R.
,
Hart
,
M. R.
,
Opielinski
,
L.
,
Wrucke
,
D.
,
Zirgaitis
,
G.
,
Uhrich
,
T. D.
, and
Hunter
,
S. K.
,
2020
, “
Who Is Wearing a Mask? Gender-, Age-, and Location-Related Differences During the COVID-19 Pandemic
,”
PLoS One
,
15
(
10
), p.
e0240785
.
62.
U.S. Gov
,
2021
, “
U.S. Census Bureau QuickFacts: United States
,” www.census.gov
63.
GrandView
,
2020
, “
Reusable Face Mask Market Size, Share & Trends Analysis Report By Material (Cotton, Nylon), By Application (Personal, Commercial), By Distribution Channel (Offline, Online), By Region, and Segment Forecasts, 2020–2027
,” Tech. Rep. GVR-4-68039-212-8, Oct.,
Grand View Research
.
64.
Mckinsey
, “
In the US, People Say Their Use of Masks May Endure
,” Tech. Rep., July,
McKinsey & Company
.
65.
Yen
,
C. F.
,
Seeley
,
R.
,
Gordon
,
P.
,
Parameswaran
,
L.
,
Wright
,
S. B.
,
Pepe
,
D. E.
, and
Mehrotra
,
P.
,
2022
, “
Assessing Changes to N95 Respirator Filtration Efficiency, Qualitative and Quantitative Fit, and Seal Check With Repeated Vaporized Hydrogen Peroxide (VHP) Decontamination
,”
Am. J. Infect. Control
,
50
(
2
), pp.
217
219
.
66.
CDC
,
2021
, “
COVID-19 Guidance, Tools, and Resources for Healthcare Workers
,” April, www.cdc.gov
67.
Goltz
,
H.
, and
Smith
,
M.
,
2019
, “
Yule-Simpson’s Paradox in Research
,”
Pract. Assess. Res. Eval.
,
15
(
1
), pp.
1
9
.
68.
Water Scarcity Atlas
,
2022
, “
Home—Water Scarcity Atlas
,” https://waterscarcityatlas.org/
69.
OECD
,
2020
, “
The Face Mask Global Value Chain in the COVID-19 Outbreak_evidence and Policy Lessons
,” Tech. Rep., May,
Organisation for Economic Co-Operation and Development
.
70.
Rainock
,
M.
,
Everett
,
D.
,
Pack
,
A.
,
Dahlin
,
E. C.
, and
Mattson
,
C. A.
,
2018
, “
The Social Impacts of Products: A Review
,”
Impact Assess. Proj. App.
,
36
(
3
), pp.
230
241
.
You do not currently have access to this content.