Abstract

Design parameters of the origami flasher pattern can be modified to meet a variety of design objectives for deployable array applications. The focus of this paper is to improve the understanding of design parameters, objectives, and trade-offs of origami flasher pattern configurations. Emphasis is placed on finite-thickness flasher models that would enable engineering applications. The methods presented aim to provide clarity on the effects of tuning flasher parameters based on existing synthesis tools. The results are demonstrated in the design of a flasher-based deployable LiDAR telescope where optimization is used to converge on optimal design parameters and the results are implemented in proof-of-concept hardware.

References

1.
Lang
,
R. J. T.
, http://www.langorigami.com/article/treemaker, Accessed April 25, 2022.
2.
Lang
,
R. J. T.
, http://www.langorigami.com/article/tessellatica, Accessed April 25, 2022.
3.
Khan
,
M. R.
,
Zekios
,
C. L.
,
Georgakopoulos
,
S. V.
, and
Bhardwaj
,
S.
,
2019
, “
Automated CAD and Modeling of Origami Structures for Reconfigurable Antenna Applications
,”
2019 International Applied Computational Electromagnetics Society Symposium (ACES)
,
Miami, FL, Apr. 14–19
, pp.
1
2
.
4.
Ye
,
Q.
,
Gu
,
X. D.
, and
Chen
,
S.
,
2022
, “
Variational Level Set Method for Topology Optimization of Origami Fold Patterns
,”
ASME J. Mech. Des.
,
144
(
8
), p.
081702
.
5.
Zirbel
,
S. A.
,
Lang
,
R. J.
,
Thomson
,
M. W.
,
Sigel
,
D. A.
,
Walkemeyer
,
P. E.
,
Trease
,
B. P.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2013
, “
Accommodating Thickness in Origami-Based Deployable Arrays
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111005
.
6.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1992
, “
Inextensional Wrapping of Flat Membranes
,”
Proceedings of the 1st International Seminar on Structural Morphology
, Vol.
25
, pp.
203
215
.
7.
Scheel
,
H.
,
1974
, “
Space-Saving Storage of Flexible Sheets
”. U. S. Patent No. 3848821.
8.
Lee
,
S.
,
Shah
,
S. I. H.
,
Lee
,
H. L.
, and
Lim
,
S.
,
2019
, “
Frequency-Reconfigurable Antenna Inspired by Origami Flasher
,”
IEEE Antennas Wireless Propagation Lett.
,
18
(
8
), pp.
1691
1695
.
9.
Yao
,
S.
,
Bonan
,
Y.
,
Shafiq
,
Y.
, and
Georgakopoulos
,
S. V.
,
2018
, “
Rigid Origami Based Reconfigurable Conical Spiral Antenna
,”
2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting
,
Boston, MA, July 8–13
,
IEEE
, pp.
179
180
.
10.
Miguélez-Gómez
,
N.
,
Parkhurst
,
J. M.
,
Pepin
,
K.
,
Moline
,
N.
,
Leblanc
,
S.
,
Udrea
,
B.
, and
Rojas-Nastrucci
,
E. A.
,
2020
, “
Thickness-Accommodation in X-Band Origami-Based Reflectarray Antenna for Small Satellites Applications
,”
2020 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE)
,
Virtual, Oct. 12–14
,
IEEE
, pp.
54
59
.
11.
Bruton
,
J. T.
,
Nelson
,
T. G.
,
Zimmerman
,
T. K.
,
Fernelius
,
J. D.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2016
, “
Packing and Deploying Soft Origami to and From Cylindrical Volumes With Application to Automotive Airbags
,”
Royal Soc. Open Sci.
,
3
(
9
), p.
160429
.
12.
Taylor
,
A.
,
Miller
,
M.
,
Fok
,
M.
,
Nilsson
,
K.
, and
Tsz Ho Tse
,
Z.
,
2016
, “
Intracardiac Magnetic Resonance Imaging Catheter With Origami Deployable Mechanisms
,”
ASME J. Med. Devices.
,
10
(
2
), p.
020957
.
13.
Li
,
S.
,
Vogt
,
D. M.
,
Rus
,
D.
, and
Wood
,
R. J.
,
2017
, “
Fluid-Driven Origami-Inspired Artificial Muscles
,”
Proc. Natl. Acad. Sci. U. S. A.
,
114
(
50
), pp.
13132
13137
.
14.
Lang
,
R. J.
,
Magleby
,
S.
, and
Howell
,
L.
,
2016
, “
Single Degree-of-Freedom Rigidly Foldable Cut Origami Flashers
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031005
.
15.
Pehrson
,
N. A.
,
Ames
,
D. C.
,
Smith
,
S. P.
,
Magleby
,
S. P.
, and
Arya
,
M.
,
2020
, “
Self-Deployable, Self-Stiffening, and Retractable Origami-Based Arrays for Spacecraft
,”
AIAA. J.
,
58
(
7
), pp.
3221
3228
.
16.
Guang
,
C.
, and
Yang
,
Y.
,
2018
, “
An Approach to Designing Deployable Mechanisms Based on Rigid Modified Origami Flashers
,”
ASME J. Mech. Des.
,
140
(
8
), p.
082301
.
17.
Kwok
,
T.-H.
,
2021
, “
Geometry-Based Thick Origami Simulation
,”
ASME J. Mech. Des.
,
143
(
6
), p.
061701
.
18.
Horvath
,
L. J.
,
2017
, “
Reviewing and Evaluating Pattern-Generation and Fabrication Methodologies for an Origami Flasher
,”
Master’s thesis, University of Toledo, Toledo, OH
.
19.
Wang
,
T.
, and
Santer
,
M. J.
,
2022
, “
An Origami-Based Rigid-Foldable Parabolic Reflector Concept
,”
AIAA SCITECH 2022 Forum
, p.
1885
.
20.
Lang
,
R. J.
,
Tolman
,
K. A.
,
Crampton
,
E. B.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2018
, “
A Review of Thickness-Accommodation Techniques in Origami-Inspired Engineering
,”
ASME Appl. Mech. Rev.
,
70
(
1
), p.
010805
.
You do not currently have access to this content.