Abstract

Disassembly is an essential step for remanufacturing end-of-life (EOL) products. Optimization of disassembly sequences and the utilization of robotic technology could alleviate the labor-intensive nature of dismantling operations. This study proposes an optimization framework for disassembly sequence planning under uncertainty considering human–robot collaboration. The proposed framework combines three attributes: disassembly cost, safety, and complexity of disassembly, namely disassembleability, to identify the optimal disassembly path and allocate operations between human and robot. A multi-attribute utility function is used to address uncertainty and make a tradeoff among multiple attributes. The disassembly time reflects the cost of disassembly which is assumed to be an uncertain parameter with a Beta distribution; the disassembleability evaluates the feasibility of conducting operations by robot; finally, the safety index ensures the protection of human workers in the work environment. An example of dismantling a desktop computer is used to show the application. The model identifies the optimal disassembly sequence with less disassembly cost, high disassembleability, and increased safety index while allocating disassembly operations among human and robot. A sensitivity analysis is conducted to show the model's performance when changing the disassembly cost for the robot.

References

1.
Khatun
,
A.
, and
Dhara
,
N.
,
2022
,
Smart Cities, Citizen Welfare, and the Implementation of Sustainable Development Goals
,
A.
Pego
, ed.,
IGI Global
,
Hershey, PA
, pp.
222
238
.
2.
Zuidwijk
,
R.
, and
Krikke
,
H.
,
2008
, “
Strategic Response to EEE Returns: Product Eco-Design or New Recovery Processes?
,”
Eur. J. Oper. Res.
,
191
(
3
), pp.
1206
1222
.
3.
Collado-Ruiz
,
D.
, and
Capuz-Rizo
,
S. F.
,
2010
, “
Modularity and Ease of Disassembly: Study of Electrical and Electronic Equipment
,”
ASME J. Mech. Des.
,
132
(
1
), p.
014502
.
4.
Ilgin
,
M. A.
, and
Taşoğlu
,
G. T.
,
2016
, “
Simultaneous Determination of Disassembly Sequence and Disassembly-to-Order Decisions Using Simulation Optimization
,”
ASME J. Manuf. Sci. Eng.
,
138
(
10
), p.
101012
.
5.
Tao
,
F.
,
Bi
,
L.
,
Zuo
,
Y.
, and
Nee
,
A. Y. C.
,
2017
, “
Partial/Parallel Disassembly Sequence Planning for Complex Products
,”
ASME J. Manuf. Sci. Eng.
,
140
(
1
), p.
011016
.
6.
Behdad
,
S.
, and
Thurston
,
D.
,
2012
, “
Disassembly and Reassembly Sequence Planning Tradeoffs Under Uncertainty for Product Maintenance
,”
ASME J. Mech. Des.
,
134
(
4
), p.
041011
.
7.
Yu
,
B.
,
Wu
,
E.
,
Chen
,
C.
,
Yang
,
Y.
,
Yao
,
B. Z.
, and
Lin
,
Q.
,
2017
, “
A General Approach to Optimize Disassembly Sequence Planning Based on Disassembly Network: A Case Study From Automotive Industry
,”
Adv. Prod. Eng. Manage.
,
12
(
4
), pp.
305
320
.
8.
Bahubalendruni
,
M. V. A. R.
, and
Varupala
,
V. P.
,
2021
, “
Disassembly Sequence Planning for Safe Disposal of End-of-Life Waste Electric and Electronic Equipment
,”
Natl. Acad. Sci. Lett.
,
44
(
3
), pp.
243
247
.
9.
Tseng
,
H.-E.
,
Huang
,
Y.-M.
,
Chang
,
C.-C.
, and
Lee
,
S.-C.
,
2020
, “
Disassembly Sequence Planning Using a Flatworm Algorithm
,”
J. Manuf. Syst.
,
57
, pp.
416
428
.
10.
Fu
,
Y.
,
Zhou
,
M.
,
Guo
,
X.
,
Qi
,
L.
, and
Sedraoui
,
K.
,
2021
, “
Multiverse Optimization Algorithm for Stochastic Biobjective Disassembly Sequence Planning Subject to Operation Failures
,”
IEEE Trans. Syst. Man Cybern. Syst.
,
52
(
2
), pp.
1041
1051
.
11.
Xia
,
X.
,
Zhu
,
H.
,
Zhang
,
Z.
,
Liu
,
X.
,
Wang
,
L.
, and
Cao
,
J.
,
2020
, “
3D-Based Multi-Objective Cooperative Disassembly Sequence Planning Method for Remanufacturing
,”
Int. J. Adv. Manuf. Technol.
,
106
(
9
), pp.
4611
4622
.
12.
Lee
,
S.-C.
,
Tseng
,
H.-E.
,
Chang
,
C.-C.
, and
Huang
,
Y.-M.
,
2020
, “
Applying Interactive Genetic Algorithms to Disassembly Sequence Planning
,”
Int. J. Precis. Eng. Manuf.
,
21
(
4
), pp.
663
679
.
13.
Mircheski
,
I.
,
Pop-Iliev
,
R.
, and
Kandikjan
,
T.
,
2016
, “
A Method for Improving the Process and Cost of Nondestructive Disassembly
,”
ASME J. Mech. Des.
,
138
(
12
), p.
121701
.
14.
Li
,
K.
,
Liu
,
Q.
,
Xu
,
W.
,
Liu
,
J.
,
Zhou
,
Z.
, and
Feng
,
H.
,
2019
, “
Sequence Planning Considering Human Fatigue for Human–Robot Collaboration in Disassembly
,”
Procedia CIRP
,
83
, pp.
95
104
.
15.
Vongbunyong
,
S.
,
Kara
,
S.
, and
Pagnucco
,
M.
,
2013
, “
Basic Behaviour Control of the Vision-Based Cognitive Robotic Disassembly Automation
,”
Assem. Autom.
,
33
(
1
), pp.
38
56
.
16.
Xu
,
W.
,
Tang
,
Q.
,
Liu
,
J.
,
Liu
,
Z.
,
Zhou
,
Z.
, and
Pham
,
D. T.
,
2020
, “
Disassembly Sequence Planning Using Discrete Bees Algorithm for Human–Robot Collaboration in Remanufacturing
,”
Robot. Comput. Integr. Manuf.
,
62
, p.
101860
.
17.
Lee
,
M.-L.
,
Behdad
,
S.
,
Liang
,
X.
, and
Zheng
,
M.
,
2020
, “
A Real-Time Receding Horizon Sequence Planner for Disassembly in a Human–Robot Collaboration Setting
,”
International Symposium on Flexible Automation
,
ASME
, Paper No.
V001T04A004
.
18.
Parsa
,
S.
, and
Saadat
,
M.
,
2021
, “
Human–Robot Collaboration Disassembly Planning for End-of-Life Product Disassembly Process
,”
Rob. Comput. Integr. Manuf.
,
71
, p.
102170
.
19.
Xu
,
C.
,
Wei
,
H.
,
Guo
,
X.
,
Liu
,
S.
,
Qi
,
L.
, and
Zhao
,
Z.
,
2020
, “
Human–Robot Collaboration Multi-objective Disassembly Line Balancing Subject to Task Failure Via Multi-objective Artificial Bee Colony Algorithm
,”
IFAC-PapersOnLine
,
53
(
5
), pp.
1
6
.
20.
Xu
,
W.
,
Cui
,
J.
,
Liu
,
B.
,
Liu
,
J.
,
Yao
,
B.
, and
Zhou
,
Z.
,
2021
, “
Human–Robot Collaborative Disassembly Line Balancing Considering the Safe Strategy in Remanufacturing
,”
J. Clean. Prod.
,
324
, p.
129158
.
21.
Fischer
,
J.
,
Stock
,
P.
, and
Zülch
,
G.
,
2005
, “Simulation of Disassembly and Re-Assembly Processes With Beta-Distributed Operation Times,”
Integrating Human Aspects in Production Management
,
G.
Zülch
,
H. S.
Jagdev
, and
P.
Stock
, eds.,
Springer
,
New York
, pp.
147
156
.
22.
Parsa
,
S.
, and
Saadat
,
M.
,
2019
, “
Intelligent Selective Disassembly Planning Based on Disassemblability Characteristics of Product Components
,”
Int. J. Adv. Manuf. Technol.
,
104
(
5
), pp.
1769
1783
.
23.
Steven Moore
,
J.
, and
Garg
,
A.
,
1995
, “
The Strain Index: A Proposed Method to Analyze Jobs for Risk of Distal Upper Extremity Disorders
,”
Am. Ind. Hyg. Assoc. J.
,
56
(
5
), pp.
443
458
.
24.
Thurston
,
Deborah L.
,
Lewis
,
Kemper
,
Chen
,
Wei
, and
Schmidt
,
Linda
,
2006
, “Utility Function Fundamentals,”
Decision Making in Engineering Design
,
K. E.
Lewis
,
W.
Chen
, and
L. C.
Schmidt
, eds.,
ASME Press
,
New York
, pp.
15
19
.
25.
Thurston
,
Deborah
,
Lewis
,
Kemper
,
Chen
,
Wei
, and
Schmidt
,
Linda
,
2006
, “Multi-Attribute Utility Analysis of Conflicting Preferences,”
Decision Making in Engineering Design
,
K. E.
Lewis
,
W.
Chen
, and
L. C.
Schmidt
, eds.,
ASME Press
,
New York
, pp.
125
133
.
26.
Thurston
,
D. L.
,
Carnahan
,
J. V.
, and
Liu
,
T.
,
1994
, “
Optimization of Design Utility
,”
ASME J. Mech. Des.
,
116
(
3
), pp.
801
808
.
27.
Clemen
,
R. T.
, and
Reilly
,
T.
,
2013
,
Making Hard Decisions With DecisionTools
,
Cengage Learning
,
Mason, OH
.
28.
Glock
,
C. H.
,
Grosse
,
E. H.
,
Kim
,
T.
,
Neumann
,
W. P.
, and
Sobhani
,
A.
,
2019
, “
An Integrated Cost and Worker Fatigue Evaluation Model of a Packaging Process
,”
Int. J. Prod. Econ.
,
207
, pp.
107
124
.
29.
Potkonjak
,
V.
,
Petrović
,
V.
,
Jovanović
,
K.
, and
Kostić
,
D.
,
2013
, “
Human–Robot Analogy− How Physiology Shapes Human and Robot Motion
,”
ECAL 2013: The Twelfth European Conference on Artificial Life
,
Sicily, Italy
,
Sept. 2–6
, pp.
136
143
.
30.
Pearce
,
M.
,
Mutlu
,
B.
,
Shah
,
J.
, and
Radwin
,
R.
,
2018
, “
Optimizing Makespan and Ergonomics in Integrating Collaborative Robots Into Manufacturing Processes
,”
IEEE Trans. Autom. Sci. Eng.
,
15
(
4
), pp.
1772
1784
.
You do not currently have access to this content.