Abstract

Plastic profile extrusion—a manufacturing process for continuous profiles with fixed cross section—requires a complex and iterative design process to prevent deformations and residual stresses in the final product. The central task is to ensure a uniform material velocity at the outlet. To this end, not only the geometry of the flow decisively influences the quality of the outflow but also the temperature profile along the flow channel wall. It is exactly here that this work contributes by presenting a novel design approach for extrusion dies that will allow for optimal temperature profiles. The core of this approach is the composition of the extrusion die through microstructures. The optimal shape and distribution of these microstructures is determined via shape optimization. The corresponding optimization procedure is the main topic of this article. Special emphasis is placed on the definition of a suitable, low-dimensional shape parameterization. The proposed design-framework is then applied to two numerical test cases with varying complexity.

References

1.
Nóbrega
,
J.
,
Carneiro
,
O.
,
Oliveira
,
P.
, and
Pinho
,
F.
,
2003
, “
Flow Balancing in Extrusion Dies for Thermoplastic Profiles
,”
Int. Polym. Process.
,
18
(
3
), pp.
298
306
.
2.
Yilmaz
,
O.
,
Gunes
,
H.
, and
Kirkkopru
,
K.
,
2014
, “
Optimization of a Profile Extrusion Die for Flow Balance
,”
Fibers Polym.
,
15
(
4
), pp.
753
761
.
3.
Siegbert
,
R.
,
Kitschke
,
J.
,
Djelassi
,
H.
,
Behr
,
M.
, and
Elgeti
,
S.
,
2014
, “
Comparing Optimization Algorithms for Shape Optimization of Extrusion Dies
,”
PAMM
,
14
(
1
), pp.
789
794
.
4.
Ettinger
,
H.
,
Sienz
,
J.
,
Pittman
,
J.
, and
Polynkin
,
A.
,
2004
, “
Parameterization and Optimization Strategies for the Automated Design of UPVC Profile Extrusion Dies
,”
Struct. Multidiscipl. Optim.
,
28
(
2
), pp.
180
194
.
5.
Elgeti
,
S.
,
Probst
,
M.
,
Windeck
,
C.
,
Behr
,
M.
,
Michaeli
,
W.
, and
Hopmann
,
C.
,
2012
, “
Numerical Shape Optimization as an Approach to Extrusion Die Design
,”
Finite Elem. Anal. Des.
,
61
, pp.
35
43
.
6.
Lotfi
,
A.
,
2005
, “
Optimal Shape Design for Metal Forming Problems by the Finite Element Method
,”
PAMM: Proceedings in Applied Mathematics and Mechanics
,
Luxemburg
,
March
, Vol. 5, Wiley Online Library, pp.
429
430
.
7.
Lebaal
,
N.
,
Schmidt
,
F.
, and
Puissant
,
S.
,
2009
, “
Design and Optimization of Three-Dimensional Extrusion Dies, Using Constraint Optimization Algorithm
,”
Finite Elem. Anal. Des.
,
45
(
5
), pp.
333
340
.
8.
Lebaal
,
N.
,
Schmidt
,
F.
, and
Puissant
,
S.
,
2010
, “
Optimisation of Extrusion Flat Die Design and Die Wall Temperature Distribution, Using Kriging and Response Surface Method
,”
Int. J. Mater. Product Technol.
,
38
(
2–3
), pp.
307
322
.
9.
Lebaal
,
N.
,
Puissant
,
S.
, and
Schmidt
,
F.
,
2010
, “
Application of a Response Surface Method to the Optimal Design of the Wall Temperature Profiles in Extrusion Die
,”
Int. J. Mater. Form.
,
3
(
1
), pp.
47
58
.
10.
Bendsoe
,
M. P.
, and
Sigmund
,
O.
,
2013
,
Topology Optimization: Theory, Methods, and Applications
,
Springer Science & Business Media
,
Berlin/Heidelberg
.
11.
Elber
,
G.
,
2016
, “
Precise Construction of Micro-Structures and Porous Geometry Via Functional Composition
,”
International Conference on Mathematical Methods for Curves and Surfaces
,
Tønsberg, Norway
,
June
, Springer, pp.
108
125
.
12.
Schroeder
,
C.
,
Regli
,
W. C.
,
Shokoufandeh
,
A.
, and
Sun
,
W.
,
2005
, “
Computer-Aided Design of Porous Artifacts
,”
Comput.-Aided Des.
,
37
(
3
), pp.
339
353
.
13.
Massarwi
,
F.
,
Machchhar
,
J.
,
Antolin
,
P.
, and
Elber
,
G.
,
2018
, “
Hierarchical, Random and Bifurcation Tiling With Heterogeneity in Micro-Structures Construction via Functional Composition
,”
Comput. Aided Des.
,
102
, pp.
148
159
.
14.
Antolin
,
P.
,
Buffa
,
A.
,
Cohen
,
E.
,
Dannenhoffer
,
J. F.
,
Elber
,
G.
,
Elgeti
,
S.
,
Haimes
,
R.
, and
Riesenfeld
,
R.
,
2019
, “
Optimizing Micro-tiles in Micro-structures as a Design Paradigm
,”
Comput. Aided Des.
,
115
, pp.
23
33
.
15.
Hojjat
,
M.
,
Stavropoulou
,
E.
, and
Bletzinger
,
K.-U.
,
2014
, “
The Vertex Morphing Method for Node-Based Shape Optimization
,”
Comput. Methods. Appl. Mech. Eng.
,
268
, pp.
494
513
.
16.
Elber
,
G.
,
2021
, “
IRIT Modeling Environment, User’s manual
,”
Departement of Computer Science
,
Technion, Haifa, Israel
, https://www.cs.technion.ac.il/~irit/
17.
Vlcek
,
J.
, and
Luksan
,
L.
,
2006
, “
Shifted Limited-Memory Variable Metric Methods for Large-Scale Unconstrained Optimization
,”
J. Computat App. Math.
,
186
(
2
), pp.
365
390
.
18.
Powell
,
M. J.
,
1994
, “A Direct Search Optimization Method that Models theObjective and Constraint Functions by Linear Interpolation,”
Advances in Optimization and Numerical Analysis
,
S.
Gomez
and
J.-P.
Hennart
, eds.,
Springer
,
Dordrecht
, pp.
51
67
.
19.
Thévenin
,
D.
, and
Janiga
,
G.
,
2008
,
Optimization and Computational Fluid Dynamics
,
Springer Science & Business Media
,
Berlin/Heidelberg
.
20.
Naumann
,
U.
,
2011
,
The Art of Differentiating Computer Programs: An Introduction to Algorithmic Differentiation
,
SIAM
,
Philadelphia, PA
.
21.
Griewank
,
A.
, and
Walther
,
A.
,
2008
,
Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation
,
SIAM
,
Philadelphia, PA
.
22.
Zolfaghari
,
A.
,
Behravesh
,
A. H.
,
Shakouri
,
E.
, and
Soury
,
E.
,
2009
, “
An Innovative Method of Die Design and Evaluation of Flow Balance for Thermoplastics Extrusion Profiles
,”
Polym. Eng. Sci.
,
49
(
9
), pp.
1793
1799
.
23.
Polak
,
E.
,
Royset
,
J.
, and
Womersley
,
R.
,
2003
, “
Algorithms With Adaptive Smoothing for Finite Minimax Problems
,”
J. Optim. Theory Appl.
,
119
(
3
), pp.
459
484
.
24.
You
,
J.-H.
, and
Park
,
K.
,
2021
, “
Design and Additive Manufacturing of Thermal Metamaterial With High Thermal Resistance and Cooling Capability
,”
Addit. Manuf.
,
41
, p.
101947
.
25.
Massarwi
,
F.
, and
Elber
,
G.
,
2016
, “
A B-spline Based Framework for Volumetric Object Modeling
,”
Comput. Aided Des.
,
78
, pp.
36
47
.
26.
Piegl
,
L.
, and
Tiller
,
W.
,
1996
,
The NURBS Book
,
Springer Science & Business Media
,
Berlin
.
27.
Lyche
,
T.
, and
Mørken
,
K.
,
1987
, “
Knot Removal for Parametric B-Spline Curves and Surfaces
,”
Comput. Aided Geom. Des.
,
4
(
3
), pp.
217
230
.
28.
Hirschler
,
T.
,
Antolin
,
P.
, and
Buffa
,
A.
,
2021
, “
Fast and Multiscale Formation of Isogeometric Matrices of Microstructured Geometric Models
,”
Comput. Mech.
,
69
(
2
), pp.
1
28
.
29.
Cottrell
,
J. A.
,
Hughes
,
T. J.
, and
Bazilevs
,
Y.
,
2009
,
Isogeometric Analysis: Toward Integration of CAD and FEA
,
John Wiley & Sons
,
Chichester, UK
.
30.
Meza
,
J. C.
,
Oliva
,
R. A.
,
Hough
,
P.
, and
Williams
,
P.
,
2007
, “
Opt++ an Object-Oriented Toolkit for Nonlinear Optimization
,”
ACM Transact. Mathematic. Software (TOMS)
,
33
(
2
), p.
12–es
.
31.
Adams
,
B. M.
,
Ebeida
,
M. S.
,
Eldred
,
M. S.
,
Geraci
,
G.
,
Jakeman
,
J. D.
,
Maupin
,
K. A.
,
Monschke
,
J. A.
,
Stephens
,
J. A.
,
Swiler
,
L. P.
,
Vigil
,
D. M.
, and
Wildey
,
T. M.
,
2019
, “
DAKOTA, a Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 6.11 Reference Manual
,” Technical Report.
You do not currently have access to this content.