Abstract

A lattice structure is a porous periodic structure with unit cells organized according to a pattern. Lattice structures are lightweight parts that are commonly produced by additive manufacturing techniques. Lattice structures require their topology defined, which effectively defines the connectivity of their unit cell. Many of these topologies are beam based, i.e., their unit cell is represented by a network of nodes connected with beams. Such lattice structures require a geometric modeling tool capable of generating their solid model. This article presents a method to support the topology transition for beam-based lattice structures by controlling the geometric parameters of topologies. This control is made possible with the function representation of the geometry. This work also analyzes how suitable different beam-based lattice topologies are to support the transition. A few case studies are carried out to demonstrate the feasibility of the proposed method.

References

1.
Yang
,
S.
,
Tang
,
Y.
, and
Zhao
,
Y. F.
,
2015
, “
A New Part Consolidation Method to Embrace the Design Freedom of Additive Manufacturing
,”
J. Manuf. Process.
,
20
(
3
), pp.
444
449
.
2.
Lam
,
H. K.
,
Ding
,
L.
,
Cheng
,
T.
, and
Zhou
,
H.
,
2019
, “
The Impact of 3D Printing Implementation on Stock Returns: A Contingent Dynamic Capabilities Perspective
,”
Int. J. Operat. Product. Manage.
,
39
(
6–8
), pp.
935
961
.
3.
Noronha
,
J.
,
Qian
,
M.
,
Leary
,
M.
,
Kyriakou
,
E.
, and
Brandt
,
M.
,
2021
, “
Hollow-Walled Lattice Materials by Additive Manufacturing: Design, Manufacture, Properties, Applications and Challenges
,”
Current Opinion Solid State Mater. Sci.
,
25
(
5
), p.
100940
.
4.
Queheillalt
,
D. T.
, and
Wadley
,
H. N.
,
2005
, “
Cellular Metal Lattices With Hollow Trusses
,”
Acta Mater.
,
53
(
2
), pp.
303
313
.
5.
Yazdi
,
M. S.
,
Latifi Rostami
,
S.
, and
Kolahdooz
,
A.
,
2016
, “
Optimization of Geometrical Parameters in a Specific Composite Lattice Structure Using Neural Networks and ABC Algorithm
,”
J. Mech. Sci. Technol.
,
30
(
4
), pp.
1763
1771
.
6.
Chen
,
D.
, and
Zheng
,
X.
,
2018
, “
Multi-material Additive Manufacturing of Metamaterials With Giant, Tailorable Negative Poisson’s Ratios
,”
Sci. Rep.
,
8
(
1
), pp.
1
8
.
7.
Maconachie
,
T.
,
Leary
,
M.
,
Lozanovski
,
B.
,
Zhang
,
X.
,
Qian
,
M.
,
Faruque
,
O.
, and
Brandt
,
M.
,
2019
, “
SLM Lattice Structures: Properties, Performance, Applications and Challenges
,”
Mater. Des.
,
183
, p.
108137
.
8.
Aslan
,
B.
, and
Yıldız
,
A. R.
,
2020
, “
Optimum Design of Automobile Components Using Lattice Structures for Additive Manufacturing
,”
Mater. Test.
,
62
(
6
), pp.
633
639
.
9.
Kandil
,
K.
,
Kaoua
,
S. A.
,
Mesbah
,
A.
,
Voznyak
,
Y.
,
Zaïri
,
F.
, and
Zaïri
,
F.
,
2021
, “
A Novel Bio-Inspired Hydrogel-Based Lattice Structure to Mechanically Mimic Human Annulus Fibrosus: A Finite Element Study
,”
Int. J. Mech. Sci.
,
211
, p.
106775
.
10.
Dong
,
G.
,
Tang
,
Y.
, and
Zhao
,
Y. F.
,
2017
, “
A Survey of Modeling of Lattice Structures Fabricated by Additive Manufacturing
,”
ASME J. Mech. Des.
,
139
(
10
), p.
100906
.
11.
Li
,
C.
,
Lei
,
H.
,
Zhang
,
Z.
,
Zhang
,
X.
,
Zhou
,
H.
,
Wang
,
P.
, and
Fang
,
D.
,
2020
, “
Architecture Design of Periodic Truss-Lattice Cells for Additive Manufacturing
,”
Addit. Manuf.
,
34
, p.
101172
.
12.
Liu
,
Y.
,
Zhuo
,
S.
,
Xiao
,
Y.
,
Zheng
,
G.
,
Dong
,
G.
, and
Zhao
,
Y. F.
,
2020
, “
Rapid Modeling and Design Optimization of Multi-Topology Lattice Structure Based on Unit-Cell Library
,”
ASME J. Mech. Des.
,
142
(
9
), p.
091705
.
13.
Hu
,
J.
,
Luo
,
Y.
, and
Liu
,
S.
,
2021
, “
Two-Scale Concurrent Topology Optimization Method of Hierarchical Structures With Self-Connected Multiple Lattice-Material Domains
,”
Composite Struct.
,
272
, p.
114224
.
14.
Wei
,
N.
,
Ye
,
H.
,
Zhang
,
X.
,
Li
,
J.
, and
Sui
,
Y.
,
2022
, “
Topology Optimization for Design of Hybrid Lattice Structures With Multiple Microstructure Configurations
,”
Acta Mech. Solida Sinica
,
35
(
3
), pp.
1
17
.
15.
Letov
,
N.
,
Velivela
,
P. T.
,
Sun
,
S.
, and
Zhao
,
Y. F.
,
2021
, “
Challenges and Opportunities in Geometric Modeling of Complex Bio-inspired Three-Dimensional Objects Designed for Additive Manufacturing
,”
ASME J. Mech. Des.
,
143
(
12
), p.
121705
.
16.
Liu
,
Y.
,
Zheng
,
G.
,
Letov
,
N.
, and
Zhao
,
Y. F.
,
2021
, “
A Survey of Modeling and Optimization Methods for Multi-Scale Heterogeneous Lattice Structures
,”
ASME J. Mech. Des.
,
143
(
4
), p.
040803
.
17.
Tao
,
W.
, and
Leu
,
M. C.
,
2016
, “
Design of Lattice Structure for Additive Manufacturing
,”
2016 International Symposium on Flexible Automation (ISFA)
,
Cleveland, OH
,
Aug. 1–3
, pp.
325
332
.
18.
Velivela
,
P. T.
,
Letov
,
N.
,
Liu
,
Y.
, and
Zhao
,
Y. F.
,
2021
, “
Application of Domain Integrated Design Methodology for Bio-inspired Design—A Case Study of Suture Pin Design
,”
Proc. Design Soc.
,
1
, pp.
487
496
.
19.
Leonardi
,
F.
,
Graziosi
,
S.
,
Casati
,
R.
,
Tamburrino
,
F.
, and
Bordegoni
,
M.
,
2019
, “
Additive Manufacturing of Heterogeneous Lattice Structures: An Experimental Exploration
,”
International Conference on Engineering Design, ICED19
,
Delft, Netherlands
,
Aug. 5–8
, pp.
669
678
.
20.
Lu
,
Y.
,
Cheng
,
L.
,
Yang
,
Z.
,
Li
,
J.
, and
Zhu
,
H.
,
2020
, “
Relationship Between the Morphological, Mechanical and Permeability Properties of Porous Bone Scaffolds and the Underlying Microstructure
,”
PLoS. One.
,
15
(
9
), p.
e0238471
.
21.
Letov
,
N.
, and
Zhao
,
Y. F.
,
2022
, “
A Geometric Modeling Framework to Support the Design of Heterogeneous Lattice Structures With Non-linearly Varying Geometry
,”
J. Comput. Design Eng.
,
9
(
5
), pp.
1565
1584
.
22.
Liu
,
Y.
,
Zhou
,
M.
,
Tang
,
Y.
,
Zhao
,
Y.
, and
Zheng
,
G.
,
2019
, “
Material-Unit Network for Multi-Material-Property and Multiscale Components
,”
Comput. Aided Design Appl.
,
17
(
3
), pp.
547
560
.
23.
Popov
,
D.
,
Kuzminova
,
Y.
,
Maltsev
,
E.
,
Evlashin
,
S.
,
Safonov
,
A.
,
Akhatov
,
I.
, and
Pasko
,
A.
,
2021
, “
CAD/CAM System for Additive Manufacturing With a Robust and Efficient Topology Optimization Algorithm Based on the Function Representation
,”
Appl. Sci.
,
11
(
16
), p.
7409
.
24.
Al-Ketan
,
O.
,
Lee
,
D.-W.
,
Rowshan
,
R.
, and
Al-Rub
,
R. K. A.
,
2020
, “
Functionally Graded and Multi-morphology Sheet TPMS Lattices: Design, Manufacturing, and Mechanical Properties
,”
J. Mech. Behav. Biomed. Mater.
,
102
, p.
103520
.
25.
Ren
,
F.
,
Zhang
,
C.
,
Liao
,
W.
,
Liu
,
T.
,
Li
,
D.
,
Shi
,
X.
,
Jiang
,
W.
,
Wang
,
C.
,
Qi
,
J.
,
Chen
,
Y.
, and
Wang
,
Z.
,
2021
, “
Transition Boundaries and Stiffness Optimal Design for Multi-TPMS Lattices
,”
Mater. Des.
,
210
, p.
110062
.
26.
Savio
,
G.
,
Meneghello
,
R.
, and
Concheri
,
G.
,
2018
, “
Geometric Modeling of Lattice Structures for Additive Manufacturing
,”
Rapid. Prototyp. J.
,
24
(
1
), pp.
351
360
.
27.
Lertthanasarn
,
J.
,
2021
, “
Hierarchical Strengthening of Polycrystal-Inspired Lattice Materials
,” Ph.D. thesis,
Imperial College London
,
London, UK
, https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.849669, Accessed April 16, 2022.
28.
Letov
,
N.
, and
Zhao
,
Y. F.
,
2020
, “
Volumetric Cells: A Framework for a Bio-Inspired Geometric Modelling Method to Support Heterogeneous Lattice Structures
,”
Proceedings of the Design Society: International Conference on Engineering Design
,
Cavtat, Croatia
,
Oct. 26–29
, pp.
295
304
.
29.
Pasko
,
A.
,
Adzhiev
,
V.
,
Sourin
,
A.
, and
Savchenko
,
V.
,
1995
, “
Function Representation in Geometric Modeling: Concepts, Implementation and Applications
,”
Visual Comput.
,
11
(
8
), pp.
429
446
.
30.
Kartasheva
,
E.
,
Adzhiev
,
V.
,
Comninos
,
P.
,
Fryazinov
,
O.
, and
Pasko
,
A.
,
2008
, “An Implicit Complexes Framework for Heterogeneous Objects Modelling,”
Heterogeneous Objects Modelling and Applications
,
A.
Pasko
,
V.
Adzhiev
, and
P.
Comninos
, eds.,
Springer
,
Berlin, Germany
, pp.
1
41
.
31.
Letov
,
N.
,
2022
, “jalovisko/LatticeQuery 0.1LQ,” https://zenodo.org/record/6959068, Accessed August 30, 2022.
32.
Liu
,
P.
,
Kang
,
Z.
, and
Luo
,
Y.
,
2020
, “
Two-Scale Concurrent Topology Optimization of Lattice Structures With Connectable Microstructures
,”
Addit. Manuf.
,
36
, p.
101427
.
33.
Maskery
,
I.
,
Hussey
,
A.
,
Panesar
,
A.
,
Aremu
,
A.
,
Tuck
,
C.
,
Ashcroft
,
I.
, and
Hague
,
R.
,
2017
, “
An Investigation Into Reinforced and Functionally Graded Lattice Structures
,”
J. Cellular Plast.
,
53
(
2
), pp.
151
165
.
34.
Pham
,
M.-S.
,
Liu
,
C.
,
Todd
,
I.
, and
Lertthanasarn
,
J.
,
2019
, “
Damage-Tolerant Architected Materials Inspired by Crystal Microstructure
,”
Nature
,
565
(
7739
), pp.
305
311
.
35.
Lertthanasarn
,
J.
,
Liu
,
C.
, and
Pham
,
M.-S.
,
2021
, “
Influence of the Base Material on the Mechanical Behaviors of Polycrystal-Like Meta-Crystals
,”
J. Micromech. Molecular Phys.
,
6
(
2
), p.
2150004
.
36.
Somnic
,
J.
, and
Jo
,
B. W.
,
2022
, “
Status and Challenges in Homogenization Methods for Lattice Materials
,”
Materials
,
15
(
2
), p.
605
.
37.
Wang
,
P.
,
Casadei
,
F.
,
Kang
,
S. H.
, and
Bertoldi
,
K.
,
2015
, “
Locally Resonant Band Gaps in Periodic Beam Lattices by Tuning Connectivity
,”
Phys. Rev. B
,
91
(
2
), p.
020103
.
38.
Urbańczyk
,
A.
,
Wright
,
J.
,
Cowden
,
D.
,
Boyd
,
M.
,
Agostini
,
B.
,
Greminger
,
M.
,
Buchanan
,
J.
,
Cactrot
,
H.
,
de León Peque
,
M. S.
,
Boin
,
P.
,
Saville
,
W.
,
Weissinger
,
B.
,
Ruben
,
N.
,
Osterwood
,
C.
,
Moeb
,
,
Kono
,
A.
,
Christoforo
,
G.
,
Just-georgeb
,
,
Peterson
,
A.
,
Gregg-Smith
,
A.
,
Bernhard
,
,
Anderson
,
D.
, and
Innovations Technology Solutions
,
2021
, “CadQuery/cadquery: CadQuery 2.1. Repository,” https://github.com/CadQuery/cadquery/tree/2.1, Accessed February 7, 2022.
39.
Alghamdi
,
A.
,
Maconachie
,
T.
,
Downing
,
D.
,
Brandt
,
M.
,
Qian
,
M.
, and
Leary
,
M.
,
2020
, “
Effect of Additive Manufactured Lattice Defects on Mechanical Properties: An Automated Method for the Enhancement of Lattice Geometry
,”
Int. J. Adv. Manuf. Technol.
,
108
(
3
), pp.
957
971
.
40.
Sanders
,
E.
,
Pereira
,
A.
, and
Paulino
,
G.
,
2021
, “
Optimal and Continuous Multilattice Embedding
,”
Sci. Advances
,
7
(
16
), p.
eabf4838
.
41.
ISO 10303-21:2016
,
2016
, “Industrial Automation Systems and Integration–Product Data Representation and Exchange—Part 21: Implementation Methods: Clear Text Encoding of the Exchange Structure. Standard,” International Organization for Standardization, Geneva, CH, Visited Aug. 16, 2021.
42.
Zhang
,
Y.
, and
Zhao
,
Y. F.
,
2022
, “
Hybrid Sparse Convolutional Neural Networks for Predicting Manufacturability of Visual Defects of Laser Powder Bed Fusion Processes
,”
J. Manuf. Syst.
,
62
, pp.
835
845
.
43.
Formlabs Inc
,
2022
, “Preform 3D Printing Software,” https://formlabs.com/software/#preform, Accessed March 1, 2022.
44.
Formlabs Inc
,
2022
, “Form 2: Affordable Desktop SLA 3D Printer,” https://formlabs.com/3d-printers/form-2, Accessed March 11, 2022.
45.
Bhattacharjee
,
N.
,
Parra-Cabrera
,
C.
,
Kim
,
Y. T.
,
Kuo
,
A. P.
, and
Folch
,
A.
,
2018
, “
Desktop-stereolithography 3D-Printing of a Poly (dimethylsiloxane)-Based Material With Sylgard-184 Properties
,”
Adv. Mater.
,
30
(
22
), p.
1800001
.
46.
Formlabs Inc
, Material data sheet. Elastic 50A. Online, https://formlabs-media.formlabs.com/datasheets/2001420-TDS-ENUS-0.pdf, Accessed March 11, 2022.
47.
Milovanović
,
A.
,
Milošević
,
M.
,
Mladenović
,
G.
,
Likozar
,
B.
,
Čolić
,
K.
, and
Mitrović
,
N.
,
2018
, “Experimental Dimensional Accuracy Analysis of Reformer Prototype Model Produced by FDM and SLA 3D Printing Technology,”
Experimental and Numerical Investigations in Materials Science and Engineering
,
Springer
, pp.
84
95
.
You do not currently have access to this content.