Abstract

This paper introduces a new technique, called state-parameterized nonlinear programming control (sp-NLPC), for designing a feedback controller that can stabilize intrinsically unstable nonlinear dynamical systems using parametric optimization. Stability-preserving constraints are included in the optimization problem solved offline by the predictive parameterized Pareto genetic algorithm (P3GA), a constrained nonlinear parametric optimization algorithm. The optimal control policy is approximated from P3GA output using radial basis function (RBF) metamodeling. The sp-NLPC technique requires fewer assumptions and is more data-efficient than alternative methods. Two nonlinear systems (single and double inverted pendulums on a cart) are used as benchmarking problems. Performance and computational efficiency are compared to several competing control design techniques. Results show that sp-NLPC outperforms and is more efficient than competing methods. A qualitative investigation on phase plane analysis for the controlled systems is presented to ensure stability. The approximating state-dependent solution for the control input lends itself to applications of control design for control co-design (CCD). Such extensions are discussed as part of future work.

References

1.
Allison
,
J. T.
, and
Herber
,
D. R.
,
2014
, “
Special Section on Multidisciplinary Design Optimization: Multidisciplinary Design Optimization of Dynamic Engineering Systems
,”
AIAA J.
,
52
(
4
), pp.
691
710
.
2.
Qin
,
S. Joe
, and
Badgwell
,
Thomas A.
,
2003
, “
A Survey of Industrial Model Predictive Control Technology
,”
Control Eng. Pract.
,
11
(
7
), pp.
733
764
.
3.
Zanon
,
M.
,
Frasch
,
J. V.
,
Vukov
,
M.
,
Sager
,
S.
, and
Diehl
,
M.
,
2014
, “Model Predictive Control of Autonomous Vehicles,”
Optimization and Optimal Control in Automotive Systems. Lecture Notes in Control and Information Sciences
, Vol.
455
,
H.
Waschl
,
I.
Kolmanovsky
,
M.
Steinbuch
, and
L.
del Re
, eds.,
Springer
,
Cham
, pp.
41
57
.
4.
Abe
,
M.
,
Hara
,
Y.
,
Otsuka
,
K.
, and
Makihara
,
K.
,
2022
, “
Semi-Active Switching Vibration Control With Tree-Based Prediction and Optimization Strategy
,”
J. Intell. Mater. Syst. Struct
.
5.
Malak
,
R. J.
, and
Paredis
,
C. J.
,
2010
, “
Using Parameterized Pareto Sets to Model Design Concepts
,”
ASME J. Mech. Des.
,
132
(
4
), p.
041007
.
6.
Galvan
,
E.
,
2016
, “
Parametric Optimization: Application in Systems Design
,” Ph.D. thesis, Texas A&M University, College Station, TX.
7.
Galvan
,
E.
, and
Malak
,
R. J.
,
2015
, “
P3ga: An Algorithm for Technology Characterization
,”
ASME J. Mech. Des.
,
137
(
1
), p.
011401
.
8.
Galvan
,
E.
,
Malak
,
R. J.
,
Hartl
,
D. J.
, and
Baur
,
J. W.
,
2018
, “
Performance Assessment of a Multi-Objective Parametric Optimization Algorithm With Application to a Multi-Physical Engineering System
,”
Struct. Multidiscipl. Optim.
,
58
(
2
), pp.
489
509
.
9.
Weaver-Rosen
,
J. M.
,
2021
, “
Multi-Objective Efficient Parametric Optimization
,” Doctoral dissertation, Texas A&M University, https://hdl.handle.net/1969.1/195106.
10.
Tsai
,
Y.-K.
, and
Malak
,
R. J.
, Jr.
,
2022
, “
A Constraint-Handling Technique for Parametric Optimization and Control Co-Design
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
St. Louis, MO
,
Aug. 14–17
.
11.
Filippi
,
C.
,
2004
, “
An Algorithm for Approximate Multiparametric Linear Programming
,”
J. Optim. Theory Appl.
,
120
(
1
), pp.
73
95
.
12.
Dua
,
V.
,
Bozinis
,
N. A.
, and
Pistikopoulos
,
E. N.
,
2002
, “
A Multiparametric Programming Approach for Mixed-Integer Quadratic Engineering Problems
,”
Comput. Chem. Eng.
,
26
(
4
), pp.
715
733
.
13.
Bemporad
,
A.
,
Morari
,
M.
,
Dua
,
V.
, and
Pistikopoulos
,
E. N.
,
2002
, “
The Explicit Linear Quadratic Regulator for Constrained Systems
,”
Automatica
,
38
(
1
), pp.
3
20
.
14.
Bemporad
,
A.
,
Morari
,
M.
,
Dua
,
V.
, and
Pistikopoulos
,
E. N.
,
2002
, “
The Explicit Control Law for Hybrid Systems via Parametric Programming
,”
Proceedings of the 2002 American Control Conference
,
Anchorage, AK
,
May 8–10
.
15.
Domínguez
,
L. F.
, and
Pistikopoulos
,
E. N.
,
2010
, “
A Novel mp-NLP Algorithm for Explicit/Multi-parametric NMPC
,”
IFAC Proc.
,
43
(
14
), pp.
539
544
.
16.
Tsai
,
Y.-K.
, and
Malak
,
R. J.
, Jr.
,
2021
, “
A Methodology for Designing a Nonlinear Feedback Controller Via Parametric Optimization: State-parameterized Nonlinear Programming
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual
,
Aug. 17–19
, Paper No. V03AT03A011.
17.
Alessio
,
A.
, and
Bemporad
,
A.
,
2009
, “A Survey on Explicit Model Predictive Control,”
Nonlinear Model Predictive Control. Lecture Notes in Control and Information Sciences
,
L.
Magni
,
D. M.
Raimondo
, and
F.
Allgöwer
, eds., Vol.
384
,
Springer
,
Berlin/Heidelberg
, pp.
345
369
.
18.
Kvasnica
,
M.
, and
Fikar
,
M.
,
2011
, “
Clipping-Based Complexity Reduction in Explicit MPC
,”
IEEE Trans. Autom. Control
,
57
(
7
), pp.
1878
1883
.
19.
Kvasnica
,
M.
,
Bakaráč
,
P.
, and
Klaučo
,
M.
,
2019
, “
Complexity Reduction in Explicit MPC: A Reachability Approach
,”
Syst. Control Lett.
,
124
, pp.
19
26
.
20.
Zhang
,
H.
,
Luo
,
Y.
, and
Liu
,
D.
,
2009
, “
Neural-Network-Based Near-Optimal Control for a Class of Discrete-Time Affine Nonlinear Systems With Control Constraints
,”
IEEE Trans. Neural Netw.
,
20
(
9
), pp.
1490
1503
.
21.
Kvasnica
,
M.
,
Bakaráč
,
P.
, and
Klaučo
,
M.
,
2019
, “
Approximating Explicit Model Predictive Control Using Constrained Neural Networks
,”
2018 Annual American Control Conference (ACC)
,
Milwaukee, WI
,
June 27–29
.
22.
Paulson
,
J. A.
, and
Mesbah
,
A.
,
2020
, “
Approximate Closed-Loop Robust Model Predictive Control With Guaranteed Stability and Constraint Satisfaction
,”
IEEE Control Syst. Lett.
,
4
(
3
), pp.
719
724
.
23.
Krishnamoorthy
,
D.
,
2020
, “
Sensitivity-Based Data Augmentation for Learning an Approximate Model Predictive Controller
,” arXiv preprint arXiv:2009.07398.
24.
Chan
,
K. J.
,
Paulson
,
J. A.
, and
Mesbah
,
A.
,
2021
, “
Deep Learning-based Approximate Nonlinear Model Predictive Control with Offset-free Tracking for Embedded Applications
,”
2021 American Control Conference (ACC)
,
New Orleans, LA
,
May 25–28
, IEEE, pp.
3475
3481
.
25.
Kiš
,
K.
, and
Klaučo
,
M.
,
2019
, “
Neural Network Based Explicit MPC for Chemical Reactor Control
,”
Acta Chim. Slov.
,
12
(
2
), pp.
218
223
.
26.
Karg
,
B.
, and
Lucia
,
S.
,
2021
, “
Approximate Moving Horizon Estimation and Robust Nonlinear Model Predictive Control Via Deep Learning
,”
Comput. Chem. Eng.
,
148
, p.
107266
.
27.
Drgoňa
,
J.
,
Picard
,
D.
,
Kvasnica
,
M.
, and
Helsen
,
L.
,
2018
, “
Approximate Model Predictive Building Control Via Machine Learning
,”
Appl. Energy
,
218
, pp.
199
216
.
28.
Hertneck
,
M.
,
Köhler
,
J.
,
Trimpe
,
S.
, and
Allgöwer
,
F.
,
2018
, “
Learning an Approximate Model Predictive Controller With Guarantees
,”
IEEE Control Syst. Lett.
,
2
(
3
), pp.
543
548
.
29.
Zhang
,
T.
,
Kahn
,
G.
,
Levine
,
S.
, and
Abbeel
,
P.
,
2016
, “
Learning Deep Control Policies for Autonomous Aerial Vehicles With MPC-Guided Policy Search
,”
2016 IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 16–21 May
, IEEE, pp.
528
535
.
30.
Kiš
,
K.
, and
Klaučo
,
M.
,
2019
, “
Neural Network Based Explicit MPC for Chemical Reactor Control
,” arXiv preprint arXiv:1912.04684.
31.
Bonzanini
,
A. D.
,
Paulson
,
J. A.
,
Makrygiorgos
,
G.
, and
Mesbah
,
A.
,
2021
, “
Fast Approximate Learning-Based Multistage Nonlinear Model Predictive Control Using Gaussian Processes and Deep Neural Networks
,”
Comput. Chem. Eng.
,
145
, p.
107174
.
32.
Buşoniu
,
L.
,
de Bruin
,
T.
,
Tolić
,
D.
,
Kober
,
J.
, and
Palunko
,
I.
,
2018
, “
Reinforcement Learning for Control: Performance, Stability, and Deep Approximators
,”
Annu. Rev. Control
,
46
, pp.
8
28
.
33.
Karg
,
B.
, and
Lucia
,
S.
,
2020
, “
Efficient Representation and Approximation of Model Predictive Control Laws Via Deep Learning
,”
IEEE Trans. Cybernet.
,
50
(
9
), pp.
3866
3878
.
34.
Drgona
,
J.
,
Kiš
,
K.
,
Tuor
,
A.
,
Vrabie
,
D.
, and
Klauco
,
M.
,
2020
, “
Differentiable Predictive Control: Constrained Deep Learning Alternative to Explicit Model Predictive Control for Unknown Nonlinear Systems
,” arXiv preprint arXiv:2011.03699.
35.
Görges
,
D.
,
2017
, “
Relations Between Model Predictive Control and Reinforcement Learning
,”
IFAC-PapersOnLine
,
50
(
1
), pp.
4920
4928
.
36.
Summers
,
S.
,
Jones
,
C. N.
,
Lygeros
,
J.
, and
Morari
,
M.
,
2009
, “
A Multiscale Approximation Scheme for Explicit Model Predictive Control With Stability, Feasibility, and Performance Guarantees
,”
Proceedings of the 48th IEEE Conference on Decision and Control (CDC) Held Jointly With 2009 28th Chinese Control Conference
,
Shanghai, China
,
Dec. 15–18
, IEEE, pp.
6327
6332
.
37.
Drgona
,
J.
,
Tuor
,
A.
, and
Vrabie
,
D.
,
2020
, “
Constrained Physics-Informed Deep Learning for Stable System Identification and Control of Unknown Linear Systems
,” arXiv preprint arXiv:2004.11184.
38.
Korda
,
M.
, and
Jones
,
C. N.
,
2014
, “
Certification of Fixed Computation Time First-Order Optimization-Based Controllers for a Class of Nonlinear Dynamical Systems
,”
2014 American Control Conference
,
Portland, OR
,
June 4–6
, IEEE, pp.
3602
3608
.
39.
Hartl
,
D. J.
,
Galvan
,
E.
,
Malak
,
R. J.
, and
Baur
,
J. W.
,
2016
, “
Parameterized Design Optimization of a Magnetohydrodynamic Liquid Metal Active Cooling Concept
,”
ASME J. Mech. Des.
,
138
(
3
), p.
031402
.
40.
Weaver-Rosen
,
J. M.
,
Leal
,
P. B.
,
Hartl
,
D. J.
, and
Malak
,
R. J.
,
2020
, “
Parametric Optimization for Morphing Structures Design: Application to Morphing Wings Adapting to Changing Flight Conditions
,”
Struct. Multidiscipl. Optim.
,
62
(
6
), pp.
2995
3007
.
41.
Summers
,
C.
,
Weaver-Rosen
,
J. M.
,
Karakalas
,
A. A.
,
Malak, Jr.
,
R. J.
, and
Lagoudas
,
D. C.
,
2021
, “
Parametric Optimization of SMA Torsional Actuators for Aircraft Morphing Applications
,”
ASME International Mechanical Engineering Congress and Exposition
, Vol.
85574
,
American Society of Mechanical Engineers
, Paper No. V003T03A056.
42.
Weaver-Rosen
,
J.
,
Tsai
,
Y.-K.
,
Schoppe
,
J.
,
Terada
,
Y.
,
Malak
,
R.
,
Cizmas
,
P. G.
, and
Lazzara
,
D. S.
,
2022
, “
Surrogate Modeling and Parametric Optimization Strategy for Minimizing Sonic Boom in a Morphing Aircraft
,”
AIAA SCITECH 2022 Forum
,
Virtual, San Diego, CA
,
Jan. 3–7
.
43.
Rawlings
,
J. B.
,
Mayne
,
D. Q.
, and
Diehl
,
M.
,
2017
,
Model Predictive Control: Theory, Computation, and Design
, Vol.
2
,
Nob Hill Publishing
,
Madison, WI
.
44.
Bellman
,
R.
,
1957
,
Dynamic Programming
,
Princeton University Press
,
Princeton, NJ
.
45.
Grancharova
,
A.
, and
Johansen
,
T. A.
,
2012
,
Explicit Nonlinear Model Predictive Control: Theory and Applications
, Vol.
429
,
Springer
,
Berlin/Heidelberg
.
46.
Chen
,
H.
, and
Allgöwer
,
F.
,
1998
, “
A Quasi-Infinite Horizon Nonlinear Model Predictive Control Scheme With Guaranteed Stability
,”
Automatica
,
34
(
10
), pp.
1205
1217
.
47.
Hardy
,
R. L.
,
1971
, “
Multiquadric Equations of Topography and Other Irregular Surfaces
,”
J. Geophys. Res. (1896–1977)
,
76
(
8
), pp.
1905
1915
.
48.
Broomhead
,
D. S.
, and
Lowe
,
D.
,
1988
, “
Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks
,” Technical Report, Royal Signals and Radar Establishment Malvern, UK.
49.
Jin
,
R.
,
Chen
,
W.
, and
Simpson
,
T. W.
,
2001
, “
Comparative Studies of Metamodelling Techniques Under Multiple Modelling Criteria
,”
Struct. Multidiscipl. Optim.
,
23
(
1
), pp.
1
13
.
50.
Díaz-Manríquez
,
A.
,
Toscano
,
G.
, and
Coello
,
C. A. C.
,
2017
, “
Comparison of Metamodeling Techniques in Evolutionary Algorithms
,”
Soft Comput.
,
21
(
19
), pp.
5647
5663
.
51.
Krishnamoorthy
,
D.
,
Mesbah
,
A.
, and
Paulson
,
J. A.
,
2021
, “
An Adaptive Correction Scheme for Offset-Free Asymptotic Performance in Deep Learning-Based Economic MPC
,”
IFAC-PapersOnLine
,
54
(
3
), pp.
584
589
.
52.
Weaver-Rosen
,
J. M.
, and
Malak J.
,
R. J.
,
2021
, “
Efficient Parametric Optimization for Expensive Single Objective Problems
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031711
.
You do not currently have access to this content.