Abstract

Herringbone gear transmission system is widely used in high-speed overloaded fields such as ships. Tooth deformation and installation error, which can cause meshing impact, load mutation, and load uneven, will seriously affect dynamic performance of the whole transmission system. Modification technology is the most effective way to achieve damping and noise reduction. In this article, we propose a three-dimensional (3D) modified tooth surface by grinding wheel along axial to the spiral rise and along radial to the parabolic movement based on the grinding principle and a multiobjective ant lion optimizer model for optimizing meshing performance and dynamic characteristics of herringbone gear transmission system and analyze the impact of optimized modifications of tooth profile, axial, and three dimension on meshing performance, loaded transmission error, load distribution coefficient and meshing impact, meshing stiffness, and vibration acceleration by the example. The results show that the 3D modification of optimization can not only eliminate the contact between the tooth side edge and tooth top edge but also eliminate the influence of installation error on contact performance. The root mean square values of the relative comprehensive vibration acceleration of tooth profile modification, axial modification, and 3D modification are reduced by 30.11%, 49.24%, and 61.41% compared with the standard, respectively. The 3D modification can greatly reduce tooth vibration, reduce resonance peak, and achieve the goal of noise reduction.

References

1.
Zhou
,
J. X.
, and
Sun
,
W. L.
,
2014
, “
Vibration and Noise Analysis of a Herringbone Gear Transmission System
,”
J. Vib. Shock
,
33
(
9
), pp.
66
71
.
2.
Wang
,
F.
,
Fang
,
Z. D.
,
Li
,
S. J.
, and
Tang
,
J. K.
,
2015
, “
Fatigue Analysis and Optimization of Marine Herringbone Gear Based on Tooth Root Dynamic Stress
,”
J. Mech. Eng.
,
32
(
7
), pp.
184
189
.
3.
Wang
,
F.
,
Zhu
,
Y. L.
,
Fang
,
Z. D.
,
Xu
,
A.
,
Chen
,
L.
, and
Sun
,
X.
,
2018
, “
Theoretical and Experimental Investigation on the Effect of Teeth Modification on the Meshing Stiffness of Herringbone Gear System
,”
J. Vib. Shock
,
37
(
1
), pp.
40
46
.
4.
Guan
,
Y. B.
,
Fang
,
Z. D.
,
Yang
,
X. H.
, and
Chen
,
G. D.
,
2018
, “
Tooth Contact Analysis of Crown Gear Coupling With Misalignment
,”
Mech. Mach. Theory
,
126
, pp.
295
311
.
5.
Sun
,
X. X.
,
2019
, “
Tooth Modification and Loaded Tooth Contact Analysis of China Bearing Reducer
,”
Proc. Inst. Mech. Eng., Part C
,
233
(
17
), pp.
6240
6261
.
6.
Wang
,
C.
,
2021
, “
Multi-Objective Optimal Design of Modification for Helical Gear
,”
Mech. Syst. Signal Process
,
157
, p.
107762
.
7.
Lagresle
,
C.
,
2019
, “
Optimization of Tooth Modifications for Spur and Helical Gears Using an Adaptive Multi-Objective Swarm Algorithm
,”
Proc. Inst. Mech. Eng., Part C
,
233
(
21–22
), pp.
7292
7308
.
8.
Younes
,
E. B.
,
Changenet
,
C.
,
Bruyère
,
J.
,
Rigaud
,
E.
, and
Perret
,
L.
,
2022
, “
Multi-Objective Optimization of Gear Unit Design to Improve Efficiency and Transmission Error
,”
Mech. Mach. Theory
,
167
, p.
104499
.
9.
Simon
,
V. V.
,
2001
, “
Optimal Machine Tool Setting for Hypoid Gears Improving Load Distribution
,”
ASME J. Mech. Des.
,
123
(
4
), pp.
577
582
.
10.
Simon
,
V. V.
,
2005
, “
Optimal Tooth Modifications in Hypoid Gears
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
646
655
.
11.
Simon
,
V. V.
,
2017
, “
Optimal Machine Tool Settings for Face-Hobbed Hypoid Gears Manufactured on CNC Hypoid Generator
,”
Int. J. Adv. Manuf. Tech.
,
88
(
5
), pp.
1579
1594
.
12.
Simon
,
V. V.
,
2020
, “
Multi-Objective Optimization of Hypoid Gears to Improve Operating Characteristics
,”
Mech. Mach. Theory
,
146
, p.
103727
.
13.
Simon
,
V. V.
,
2020
, “
Multi-Objective Optimization of the Manufacture of Face-Milled Hypoid Gears on Numerical Controlled Machine Tool
,”
Proc. Inst. Mech. Eng., Part B
,
235
(
6–7
), pp.
1120
1130
.
14.
Ding
,
H.
,
Tang
,
J. Y.
,
Zhong
,
J.
, and
Zhou
,
Z. Y.
,
2016
, “
A Hybrid Modification Approach of Machine-Tool Setting Considering High Tooth Contact Performance in Spiral Bevel and Hypoid Gears
,”
J. Manuf. Syst.
,
41
, pp.
228
238
.
15.
Ding
,
H.
,
Tang
,
J. Y.
,
Shao
,
W.
,
Zhou
,
Y. S.
, and
Wan
,
G. X.
,
2017
, “
Optimal Modification of Tooth Flank Form Error Considering Measurement and Compensation of Cutter Geometric Errors for Spiral Bevel and Hypoid Gears
,”
Mech. Mach. Theory
,
118
, pp.
14
31
.
16.
Wang
,
X. G.
,
Wang
,
Y. M.
,
Liu
,
Y. X.
,
Zhang
,
X. B.
, and
Zheng
,
D. Y.
,
2018
, “
Multi-objective Optimization Modification of a Tooth Surface With Minimum of Flash Temperature and Vibration Acceleration RMS
,”
J. Mech. Sci. Technol.
,
32
(
7
), pp.
3097
3106
.
17.
Qiu
,
P. Y.
,
Zhao
,
N.
, and
Wang
,
F.
,
2016
, “
Optimum Microgeometry Modifications of Herringbone Gear by Means of Fitness Predicted Genetic Algorithm
,”
J. Vibroengineering
,
18
(
8
), pp.
4964
4979
.
18.
Yang
,
J.
,
Lin
,
T. J.
,
He
,
Z. Y.
, and
Chen
,
M. H.
,
2022
, “
Novel Calculation Method for Dynamic Excitation of Modified Double-Helical Gear Transmission
,”
Mech. Mach. Theory
,
167
, p.
104467
.
19.
Nishino
,
T.
,
2000
, “
Mesh Exciting Force of Helical Gears With 3-D Tooth Modification: Tooth Modification With Low Mesh Exciting Force in the Wide Load Range
,”
Trans. Jpn. Soc. Mech. Eng. Part C
,
66
(
651
), pp.
3724
3732
.
20.
Guo
,
F.
, and
Fang
,
Z. D.
,
2019
, “
A New Algorithm to Solve Meshing-In Impact Considering the Measured Pitch Error and to Investigate Its Influence on the Dynamic Characteristics of a Gear System
,”
Int. J. Precis. Eng. Manuf.
,
20
(
3
), pp.
395
406
.
21.
Litvin
,
F. L.
,
Fan
,
Q.
,
Vecchiato
,
D.
,
Demenego
,
A.
,
Handschuh
,
R. F.
, and
Sep
,
T. M.
,
2001
, “
Computerized Generation and Simulation of Meshing of Modified Spur and Helical Gearsmanufactured by Shaving
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
39
), pp.
5037
5056
.
22.
Yuan
,
B.
,
Liu
,
G.
,
Yue
,
Y. J.
,
Liu
,
L.
, and
Shen
,
Y. B.
,
2021
, “
A Novel Tooth Surface Modification Methodology for Wide- Faced Double-Helical Gear Pairs
,”
Mech. Mach. Theory
,
160
, p.
104299
.
23.
Wang
,
C.
,
2021
, “
Study on 3-D Modification for Reducing Vibration of Helical Gear Based on TCA Technology, LTCA Technology and System Dynamics
,”
Mech. Syst. Signal Process
,
146
, p.
106991
.
24.
Wang
,
N. N.
,
Li
,
X. Y.
,
Wang
,
K.
,
Zeng
,
Q. L.
, and
Shen
,
X.
,
2017
, “
A Novel Axial Modification and Simulation Analysis of Involute Spur Gear
,”
Stroj Vestn J. Mech. Eng.
,
63
(
12
), pp.
736
745
.
25.
Argyris
,
J.
,
Fuentes
,
A.
, and
Litvin
,
F. L.
,
2002
, “
Computerized Integrated Approach for Design and Stress Analysis of Spiral Bevel Gears
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
11
), pp.
1057
1095
.
26.
Ding
,
H.
,
Tang
,
J. Y.
,
Shao
,
W.
, and
Peng
,
S. D.
,
2018
, “
An Innovative Determination Approach to Tooth Compliance for Spiral Bevel and Hypoid Gears by Using Double-Curved Shell Model and Rayleigh-Ritz Approach
,”
Mech. Mach. Theory
,
130
, pp.
27
46
.
27.
Guo
,
F.
, and
Fang
,
Z. D.
,
2019
, “
The Statistical Analysis of the Dynamic Performance of a Gear System Considering Random Manufacturing Errors Under Different Levels of Machining Precision
,”
Proc. Inst. Mech. Eng., Part K
,
234
(
1
), pp.
3
18
.
28.
Wang
,
C.
,
2019
, “
Optimization of Tooth Profile Modification Based on Dynamic Characteristics of Helical Gear Pair
,”
Iran. J. Sci. Technol. Trans. Mech. Eng.
,
43
(
1
), pp.
631
639
.
29.
Mu
,
Y. M.
,
Li
,
W. L.
,
Fang
,
Z. D.
, and
Zhang
,
X. J.
,
2018
, “
A Novel Tooth Surface Modification Method for Spiral Bevel Gears With Higher-Order Transmission Error
,”
Mech. Mach. Theory
,
126
, pp.
49
60
.
30.
Wang
,
Y.
,
Shao
,
Y. M.
,
Chen
,
Z. G.
,
Du
,
M. G.
, and
Xiao
,
H. F.
,
2019
, “
Mesh Stiffness Calculation of Helical Gears With Profile Modification
,”
J. Eng.
,
2019
(
13
), pp.
225
230
.
31.
Jia
,
C.
,
Fang
,
Z. D.
,
Yao
,
L.
, and
Zhang
,
J.
,
2021
, “
Tooth Flank Modification to Reduce Transmission Error and Mesh-In Impact Force in Consideration of Contact Ratio for Helical Gears
,”
Proc. Inst. Mech. Eng., Part C
,
235
(
19
), pp.
4475
4493
.
32.
Wang
,
X. G.
,
An
,
S. Y.
,
Wang
,
Y. M.
,
Tang
,
J.
, and
Ruan
,
J. F.
,
2021
, “
Optimal Analysis of Gear Modification Fitting in Alternating Time Domain Aiming at Minimizing Meshing-In Impact of Teeth-Pair Contact Interface
,”
J. Vibroengineering
,
3
(
5
), pp.
1293
1314
.
33.
Zeng
,
Z. Q.
, and
Zhao
,
X. Z.
,
2010
, “
Study About the Effect of Meshing Stiffness and Meshing Damping on Gear Vibration
,”
Mach. Tool. Hyd.
,
38
(
5
), pp.
32
34
.
34.
Jiang
,
J. K.
,
Fang
,
Z. D.
, and
Su
,
J. Z.
,
2013
, “
Option Design of Modified Helical Gear Tooth Surface Based on Minmum Amplitude of Loaded Transmission Error
,”
J. Aerosp. Power
,
28
(
7
), pp.
1637
1643
.
35.
Mirjalili
,
S.
,
2015
, “
The Ant Lion Optimizer
,”
Adv. Eng. Softw.
,
83
(
C
), pp.
80
98
.
36.
Mirjalili
,
S.
,
Jangir
,
P.
, and
Saremi
,
S.
,
2017
, “
Multi-Objective Ant Lion Optimizer: A Multi-Objective Optimization Algorithm for Solving Engineering Problems
,”
Appl. Intell.
,
46
(
1
), pp.
79
95
.
You do not currently have access to this content.