Abstract

The symmetrical origami waterbomb (WB) base shows promising applications in engineering due to its considerable mechanical behaviors. As a common phenomenon in actual origami, the stability performance of the WB base has attracted increasing attention. However, there are few studies on graphical design for the stability of WB bases. Based on the phase diagram of the intrinsic parameters, this paper proposes an intuitive and synthesized stability design method for the WB base. First, the basic principles are demonstrated using the Euler–Lagrange functional equation. In addition, the details of the method are illustrated by two typical WB bases with a given stiffness ratio. Second, according to the proposed design method, case studies are presented, and the stability behaviors are evaluated by the analytical method and finite element analysis (FEA) simulation. Finally, the prototypes of the case study are designed, and a measurement experiment of the stable states is carried out. Both FEA simulation and the experimental result demonstrate the effectiveness of the proposed design method.

References

1.
Hull
,
T. C.
,
2005
, “
Origami Design Secrets: Mathematical Methods for an Ancient Art
,”
Math. Intel.
,
27
(
2
), pp.
92
95
.
2.
McClintock
,
H.
,
Temel
,
F. Z.
,
Doshi
,
N.
,
Koh
,
J.-S.
, and
Wood
,
R. J.
,
2018
, “
The Millidelta: A High-Bandwidth, High-Precision, Millimeter-Scale Delta Robot
,”
Sci. Robot.
,
3
(
14
), p.
eaar3018
.
3.
Miskin
,
M. Z.
,
Cortese
,
A. J.
,
Dorsey
,
K.
,
Esposito
,
E. P.
,
Reynolds
,
M. F.
,
Liu
,
Q.
,
Cao
,
M.
,
Muller
,
D. A.
,
McEuen
,
P. L.
, and
Cohen
,
I.
,
2020
, “
Electronically Integrated, Mass-Manufactured, Microscopic Robots
,”
Nature
,
584
(
7822
), pp.
557
561
.
4.
Chen
,
X.
,
Feng
,
H.
,
Ma
,
J.
, and
Chen
,
Y.
,
2019
, “
A Plane Linkage and Its Tessellation for Deployable Structure
,”
Mech. Mach. Theory
,
142
, p.
103605
.
5.
Nelson
,
T. G.
,
Zimmerman
,
T. K.
,
Magleby
,
S. P.
,
Lang
,
R. J.
, and
Howell
,
L. L.
,
2019
, “
Developable Mechanisms on Developable Surfaces
,”
Sci. Rob.
,
4
(
27
), p. eaau5171.
6.
Yang
,
F.
,
You
,
Z.
, and
Chen
,
Y.
,
2020
, “
Foldable Hexagonal Structures Based on the Threefold-Symmetric Bricard Linkage
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011012
.
7.
Mukhopadhyay
,
T.
,
Ma
,
J.
,
Feng
,
H.
,
Hou
,
D.
,
Gattas
,
J. M.
,
Chen
,
Y.
, and
You
,
Z.
,
2020
, “
Programmable Stiffness and Shape Modulation in Origami Materials: Emergence of a Distant Actuation Feature
,”
Appl. Mater. Today
,
19
, p.
100537
.
8.
Yuan
,
L.
,
Dai
,
H.
,
Song
,
J.
,
Ma
,
J.
, and
Chen
,
Y.
,
2020
, “
The Behavior of a Functionally Graded Origami Structure Subjected to Quasi-Static Compression
,”
Mater. Des.
,
189
, p.
108494
.
9.
Zhang
,
X.
, and
Chen
,
Y.
,
2019
, “
Vertex-Splitting on a Diamond Origami Pattern
,”
ASME J. Mech. Rob.
,
11
(
3
), p.
031014
.
10.
Tachi
,
T.
,
2009
, “
Simulation of Rigid Origami
,”
Origami
,
4
(
8
), pp.
175
187
.
11.
Wei
,
G.
, and
Dai
,
J. S.
,
2014
, “
Origami-Inspired Integrated Planar-Spherical Overconstrained Mechanisms
,”
ASME J. Mech. Des.
,
136
(
5
), p.
051003
.
12.
Tachi
,
T.
, and
Hull
,
T. C.
,
2017
, “
Self-Foldability of Rigid Origami
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
021008
.
13.
Gillman
,
A.
,
Fuchi
,
K.
, and
Buskohl
,
P.
,
2018
, “
Truss-Based Nonlinear Mechanical Analysis for Origami Structures Exhibiting Bifurcation and Limit Point Instabilities
,”
Int. J. Solids Struct.
,
147
, pp.
80
93
.
14.
Sareh
,
P.
, and
Guest
,
S. D.
,
2015
, “
Design of Isomorphic Symmetric Descendants of the Miura-Ori
,”
Smart Mater. Struct.
,
24
(
8
), p.
085001
.
15.
Sareh
,
P.
,
2019
, “
The Least Symmetric Crystallographic Derivative of the Developable Double Corrugation Surface: Computational Design Using Underlying Conic and Cubic Curves
,”
Mater. Des.
,
183
, p.
108128
.
16.
Gillman
,
A. S.
,
Fuchi
,
K.
, and
Buskohl
,
P. R.
,
2019
, “
Discovering Sequenced Origami Folding Through Nonlinear Mechanics and Topology Optimization
,”
ASME J. Mech. Des.
,
141
(
4
), p.
041401
.
17.
Sareh
,
P.
, and
Chen
,
Y.
,
2020
, “
Intrinsic Non-Flat-Foldability of Two-Tile ddc Surfaces Composed of Glide-Reflected Irregular Quadrilaterals
,”
Int. J. Mech. Sci.
,
185
, p.
105881
.
18.
Tang
,
J.
,
Tian
,
M.
,
Wang
,
C.
,
Wang
,
X.
, and
Mao
,
H.
,
2021
, “
A Novel Scheme of Folding Discretized Surfaces of Revolution Inspired by Waterbomb Origami
,”
Mech. Mach. Theory
,
165
, p.
104431
.
19.
Zirbel
,
S. A.
,
Lang
,
R. J.
,
Thomson
,
M. W.
,
Sigel
,
D. A.
,
Walkemeyer
,
P. E.
,
Trease
,
B. P.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2013
, “
Accommodating Thickness in Origami-Based Deployable Arrays
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111005
.
20.
Tachi
,
T.
,
2011
, “
Rigid-Foldable Thick Origami
,”
Origami
,
5
, pp.
253
264
.
21.
Chen
,
Y.
,
Peng
,
R.
, and
You
,
Z.
,
2015
, “
Origami of Thick Panels
,”
Science
,
349
(
6246
), pp.
396
400
.
22.
Lang
,
R. J.
,
Brown
,
N.
,
Ignaut
,
B.
,
Magleby
,
S.
, and
Howell
,
L.
,
2020
, “
Rigidly Foldable Thick Origami Using Designed-Offset Linkages
,”
ASME J. Mech. Rob.
,
12
(
2
), p.
021106
.
23.
Howell
,
L. L.
,
2013
, “Compliant Mechanisms,”
21st Century Kinematics
,
J. M.
McCarthy
, ed.,
Springer
,
London
, pp.
189
216
.
24.
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Olsen
,
B. M.
,
2013
,
Handbook of Compliant Mechanisms
,
John Wiley & Sons
,
Oxford, UK
.
25.
Zhang
,
X.
, and
Zhu
,
B.
,
2018
,
Topology Optimization of Compliant Mechanisms
,
Springer
,
Berlin, Germany
.
26.
Zhu
,
B.
,
Zhang
,
X.
,
Zhang
,
H.
,
Liang
,
J.
,
Zang
,
H.
,
Li
,
H.
, and
Wang
,
R.
,
2020
, “
Design of Compliant Mechanisms Using Continuum Topology Optimization: A Review
,”
Mech. Mach. Theory
,
143
, p.
103622
.
27.
Zhu
,
B.
,
Wang
,
R.
,
Zhang
,
H.
,
Li
,
H.
,
Liang
,
J.
,
Zhang
,
X.
,
Li
,
H.
, and
Nishiwaki
,
S.
,
2022
, “
An Approach for Geometrically Nonlinear Topology Optimization Using Moving Wide-bezier Components With Constrained Ends
,”
ASME J. Mech. Des.
,
144
(
1
), p.
011704
.
28.
Meng
,
L.
,
Kang
,
R.
,
Gan
,
D.
,
Chen
,
G.
,
Chen
,
L.
,
Branson
,
D. T.
, and
Dai
,
J. S.
,
2020
, “
A Mechanically Intelligent Crawling Robot Driven by Shape Memory Alloy and Compliant Bistable Mechanism
,”
ASME J. Mech. Rob.
,
12
(
6
), p.
061005
.
29.
Chen
,
G.
,
Han
,
Q.
, and
Jin
,
K.
,
2020
, “
A Fully Compliant Tristable Mechanism Employing Both Tensural and Compresural Segments
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011003
.
30.
Chen
,
G.
,
Wu
,
H.
,
Li
,
B.
, and
Wang
,
M. Y.
,
2021
, “
Fully Compliant Bistable Mechanisms With Enhanced Pitch Stiffness
,”
Mech. Syst. Signal Process.
,
161
, p.
107926
.
31.
Butler
,
J.
,
Greenwood
,
J.
,
Howell
,
L. L.
, and
Magleby
,
S.
,
2021
, “
Bistability in Cylindrical Developable Mechanisms Through the Principle of Reflection
,”
J. Mech. Des.
,
143
(
8
), p.
083302
.
32.
Zhang
,
H.
,
Zhang
,
X.
,
Huang
,
Y.
,
Du
,
J.
, and
Zhu
,
B.
,
2019
, “
A Novel Reconfigurable Wheel-Legged Mobile Mechanism
,”
ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
,
American Society of Mechanical Engineers Digital Collection
, p. V05AT07A011.
33.
Kong
,
K.
,
Chen
,
G.
, and
Hao
,
G.
,
2019
, “
Kinetostatic Modeling and Optimization of a Novel Horizontal-Displacement Compliant Mechanism
,”
ASME J. Mech. Rob.
,
11
(
6
), p.
064502
.
34.
Wang
,
P.
, and
Xu
,
Q.
,
2018
, “
Design and Modeling of Constant-Force Mechanisms: A Survey
,”
Mech. Mach. Theory
,
119
, pp.
1
21
.
35.
Chen
,
Q.
,
Zhang
,
X.
, and
Zhu
,
B.
,
2018
, “
Design of Buckling-Induced Mechanical Metamaterials for Energy Absorption Using Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
58
(
4
), pp.
1395
1410
.
36.
Zhang
,
X.
, and
Xu
,
Q.
,
2019
, “
Design and Development of a New 3-DOF Active-Type Constant-Force Compliant Parallel Stage
,”
Mech. Mach. Theory
,
140
, pp.
654
665
.
37.
Bilancia
,
P.
,
Smith
,
S. P.
,
Berselli
,
G.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2020
, “
Zero Torque Compliant Mechanisms Employing Pre-Buckled Beams
,”
ASME J. Mech. Des.
,
142
(
11
), p.
113301
.
38.
Greenberg
,
H.
,
Gong
,
M.
,
Magleby
,
S.
, and
Howell
,
L.
,
2011
, “
Identifying Links Between Origami and Compliant Mechanisms
,”
Mech. Sci.
,
2
(
2
), pp.
217
225
.
39.
Jacobsen
,
J. O.
,
Chen
,
G.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2009
, “
Lamina Emergent Torsional (LET) Joint
,”
Mech. Mach. Theory
,
44
(
11
), pp.
2098
2109
.
40.
Jacobsen
,
J. O.
,
Winder
,
B. G.
,
Howell
,
L. L.
, and
Magleby
,
S. P.
,
2010
, “
Lamina Emergent Mechanisms and Their Basic Elements
,”
ASME J. Mech. Rob.
,
2
(
1
), p.
011003
.
41.
Hanna
,
B. H.
,
Lund
,
J. M.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2014
, “
Waterbomb Base: A Symmetric Single-Vertex Bistable Origami Mechanism
,”
Smart Mater. Struct.
,
23
(
9
), p.
094009
.
42.
Hanna
,
B. H.
,
Magleby
,
S. P.
,
Lang
,
R. J.
, and
Howell
,
L. L.
,
2015
, “
Force–Deflection Modeling for Generalized Origami Waterbomb-Base Mechanisms
,”
ASME J. Appl. Mech.
,
82
(
8
), p.
081001
.
43.
Safsten
,
C.
,
Fillmore
,
T.
,
Logan
,
A.
,
Halverson
,
D.
, and
Howell
,
L.
,
2016
, “
Analyzing the Stability Properties of Kaleidocycles
,”
ASME J. Appl. Mech.
,
83
(
5
), p.
051001
.
44.
Zhang
,
H.
,
Zhu
,
B.
, and
Zhang
,
X.
,
2019
, “
Origami Kaleidocycle-Inspired Symmetric Multistable Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011009
.
45.
Greenwood
,
J.
,
Avila
,
A.
,
Howell
,
L.
, and
Magleby
,
S.
,
2020
, “
Conceptualizing Stable States in Origami-Based Devices Using an Energy Visualization Approach
,”
ASME J. Mech. Des.
,
142
(
9
), p.
093302
.
46.
Zhang
,
H.
,
Zhang
,
X.
, and
Zhu
,
B.
,
2019
, “
A Novel Flexural Lamina Emergent Spatial Joint
,”
Mech. Mach. Theory
,
142
, p.
103582
.
47.
Zhang
,
H.
,
Zhang
,
X.
,
Zhu
,
B.
,
Wang
,
R.
, and
Li
,
H.
,
2022
, “
Design and Analysis of Corrugated Flexure-Based Lamina Emergent Spatial Joints for Symmetrical Compliant Kaleidocycles
,”
Mech. Mach. Theory
,
167
, p.
104525
.
48.
Chen
,
Y.
,
Feng
,
H.
,
Ma
,
J.
,
Peng
,
R.
, and
You
,
Z.
,
2016
, “
Symmetric Waterbomb Origami
,”
Proc. R. Soc. A: Math. Phys. Eng. Sci.
,
472
(
2190
), p.
20150846
.
49.
Ma
,
J.
,
Feng
,
H.
,
Chen
,
Y.
,
Hou
,
D.
, and
You
,
Z.
,
2020
, “
Folding of Tubular Waterbomb
,”
Research
,
2020
, pp.
1
8
.
50.
Bowen
,
L.
,
Springsteen
,
K.
,
Feldstein
,
H.
,
Frecker
,
M.
,
Simpson
,
T. W.
, and
von Lockette
,
P.
,
2015
, “
Development and Validation of a Dynamic Model of Magneto-active Elastomer Actuation of the Origami Waterbomb Base
,”
ASME J. Mech. Rob.
,
7
(
1
), p.
011010
.
51.
Bowen
,
L.
,
Springsteen
,
K.
,
Frecker
,
M.
, and
Simpson
,
T.
,
2016
, “
Trade Space Exploration of Magnetically Actuated Origami Mechanisms
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031012
.
52.
Hu
,
W.
,
Lum
,
G. Z.
,
Mastrangeli
,
M.
, and
Sitti
,
M.
,
2018
, “
Small-Scale Soft-Bodied Robot With Multimodal Locomotion
,”
Nature
,
554
(
7690
), pp.
81
85
.
53.
Lanczos
,
C.
,
2020
,
The Variational Principles of Mechanics
,
University of Toronto Press
,
Toronto, Canada
.
54.
Gan
,
D.
, and
Dai
,
J. S.
,
2013
, “
Geometry Constraint and Branch Motion Evolution of 3-pup Parallel Mechanisms With Bifurcated Motion
,”
Mech. Mach. Theory
,
61
, pp.
168
183
.
55.
Tang
,
Z.
, and
Dai
,
J. S.
,
2018
, “
Bifurcated Configurations and Their Variations of an 8-Bar Linkage Derived From an 8-kaleidocycle
,”
Mech. Mach. Theory
,
121
, pp.
745
754
.
You do not currently have access to this content.