Abstract

System reconfiguration is essential in complex systems management, as it is an enabler of system adaptability with regard to system evolutions. System evolutions have to be managed to ensure system effectiveness and efficiency through its whole life cycle, particularly when it comes to complex systems that take years of development and dozens of years of usage. In this context, system reconfiguration ensures system operation and maintains system “ilities” (e.g., reliability, availability, maintainability, testability, and safety). This research has been conducted in the context of a large international aerospace, space, ground transportation, defense, and security company. This research aims at supporting system reconfiguration during operations. Within current industrial practices, the development of reconfiguration support is challenging as it requires integrating data related to observations (from operations) and system design (from engineering). More specifically, there is a need to integrate and link relevant reconfiguration data concerning the system objectives, operational context, and level of functioning. This paper proposes integrating and linking this fundamental data within a reconfiguration method. MBSysRec is a multidisciplinary method that involves configuration generation and a multicriteria decision-making method for configuration evaluation and selection to support system reconfiguration during operations. The method has been implemented on two projects based on historical data. Resulting configurations have been discussed and assessed by system reconfiguration experts. A Search and Rescue (SAR) case study is used to demonstrate the method. The method is proven effective for finding relevant system configurations for reconfiguring the already deployed system to achieve search and rescue missions.

References

1.
Siddiqi
,
A.
, and
de Weck
,
O. L.
,
2008
, “
Modeling Methods and Conceptual Design Principles for Reconfigurable Systems
,”
ASME J. Mech. Des.
,
130
(
10
), p.
101102
.
2.
ISO/IEC/IEEE:15288
,
2015
,
ISO/IEC/IEEE/15288: Systems and Software Engineering-System Life Cycle Processes
.
3.
Walden
,
D.D.
,
Roedler
,
G.J.
,
Forsberg
,
K.
,
Hamelin
,
R.D.
, and
Shortell
,
T.M.
,
2015
,
Systems Engineering Handbook: A Guide for System Life Cycle Processes and Activities
, 4th ed.,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
4.
Qasim
,
L.
,
Hein
,
A. M.
,
Jankovic
,
M.
,
Olaru
,
S.
, and
Garnier
,
J.-L.
,
2019
, “
Towards a Reconfiguration Framework
,”
Proceedings of ICED 2019, The 22nd International Conference on Engineering Design: Responsible Design for Our Future
,
Delft, The Netherlands
,
Aug. 5–8
,
pp. 2617–2626
.
5.
Qasim
,
L.
,
Jankovic
,
M.
,
Olaru
,
S.
, and
Garnier
,
J.-L.
,
2019
,
Complex Systems Design & Management
,
E.
Bonjour
,
D.
Krob
,
L.
Palladino
,
and F.
Stephan
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
97
108
.
6.
Dumond
,
R.
,
Farcet
,
N.
,
Slimani
,
M.
, and
Garnier
,
J.-L.
,
2008
, “
A Model-Based Architecture to Manage Tactical Systems of Systems
,”
NATO SCI-187 Symposium on Agility, Resilience and Control in Network-Enabled Capabilities (NEC)
,
Amsterdam, The Netherlands
.
7.
De Weck
,
O. L.
,
Ross
,
A. M.
, and
Rhodes
,
D. H.
,
2012
, “
Investigating Relationships and Semantic Sets Amongst System Lifecycle Properties (Ilities)
,”
Third International Engineering Systems Symposium CESUN
,
Delft, The Netherlands
,
June 18–20
, pp.
18
20
.
8.
Siddiqi
,
A.
,
2006
,
Reconfigurability in Space Systems: Architecting Framework and Case Studies, Doctoral dissertation, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA
.
9.
Ryan
,
E. T.
,
Jacques
,
D. R.
, and
Colombi
,
J. M.
,
2013
, “
An Ontological Framework for Clarifying Flexibility-Related Terminology via Literature Survey
,”
Syst. Eng.
,
16
(
1
), pp.
99
110
.
10.
Fricke
,
E.
, and
Schulz
,
A. P.
,
2005
, “
Design for Changeability (DfC): Principles to Enable Changes in Systems Throughout Their Entire Lifecycle
,”
Syst. Eng.
,
8
(
4
), pp.
342
359
.
11.
Ferguson
,
S.
,
Siddiqi
,
A.
,
Lewis
,
K.
, and
de Weck
,
O. L.
,
2007
, “
Flexible and Reconfigurable Systems: Nomenclature and Review
,”
Proceedings of the ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 6: 33rd Design Automation Conference, Parts A and B
,
Las Vegas, NV
,
Sept. 4–7
, pp.
249
263
.
12.
Ross
,
A. M.
,
Rhodes
,
D. H.
, and
Hastings
,
D. E.
,
2007
, “
Defining System Changeability: Reconciling Flexibility, Adaptability, Scalability, and Robustness for Maintaining System Lifecycle Value
,”
17th Annual International Symposium of the International Council on Systems Engineering INCOSE 2007—Systems Engineering: Key to Intelligent Enterprises
,
San Diego, CA
,
June 24–28
, Vol.
2
, pp.
735
749
.
13.
Schuh
,
G.
,
Gartzen
,
T.
,
Soucy-Bouchard
,
S.
, and
Basse
,
F.
,
2017
, “
Enabling Agility in Product Development Through an Adaptive Engineering Change Management
,”
Procedia CIRP
,
63
, pp.
342
347
.
14.
Schuh
,
G.
,
Riesener
,
M.
, and
Breunig
,
S.
,
2017
, “
Design for Changeability: Incorporating Change Propagation Analysis in Modular Product Platform Design
,”
Procedia CIRP
,
61
, pp.
63
68
.
15.
Gausemeier
,
J.
,
Gaukstern
,
T.
, and
Tschirner
,
C.
,
2013
, “
Systems Engineering Management Based on a Discipline-Spanning System Model
,”
Procedia Comput. Sci.
,
16
, pp.
303
312
.
16.
Ziv-Av
,
A.
, and
Reich
,
Y.
,
2005
, “
SOS—Subjective Objective System for Generating Optimal Product Concepts
,”
Des. Stud.
,
26
(
5
), pp.
509
533
.
17.
NAF v4
,
2018
, “
North Atlantic Treaty Organization: NATO Architecture Framework v4.0 Documentation
.”
18.
Stone
,
R.
,
Wood
,
K.
, and
Crawford
,
R. H.
,
2000
, “
A Heuristic Method for Identifying Modules for Product Architectures
,”
Des. Stud.
,
21
(
1
), pp.
5
31
.
19.
Yassine
,
A. A.
, and
Wissmann
,
L. A.
,
2007
, “
The Implications of Product Architecture on the Firm
,”
Syst. Eng.
,
10
(
2
), pp.
118
137
.
20.
Ulrich
,
K. T.
, and
Eppinger
,
S. D.
,
1995
,
Product Design and Development
,
Irwin McGraw-Hill Higher Education
,
New York
.
21.
Crawley
,
E.
,
De Weck
,
O.
,
Magee
,
C.
,
Moses
,
J.
,
Seering
,
W.
,
Schindall
,
J.
,
Wallace
,
D.
, and
Whitney
,
D.
,
2004
, “The Influence of Architecture in Engineering Systems (Monograph),”
MIT Engineering Systems Monograph.
,
CiteSeer
,
Cambridge, MA
.
22.
Bryant
,
C. R.
,
Stone
,
R. B.
,
Mcadams
,
D. A.
,
Kurtoglu
,
T.
, and
Campbell
,
M. I.
,
2005
, “
Concept Generation From the Functional Basis of Design
,”
ICED 05: 15th International Conference on Engineering Design: Engineering Design and the Global Economy
,
Melbourne, Australia
,
Aug. 15–18
, p.
1702
.
23.
Kurtoglu
,
T.
, and
Campbell
,
M. I.
,
2009
, “
Automated Synthesis of Electromechanical Design Configurations From Empirical Analysis of Function to Form Mapping
,”
J. Eng. Des.
,
20
(
1
), pp.
83
104
.
24.
Chen
,
R.
,
Liu
,
Y.
,
Fan
,
H.
,
Zhao
,
J.
, and
Ye
,
X.
,
2019
, “
An Integrated Approach for Automated Physical Architecture Generation and Multi-Criteria Evaluation for Complex Product Design
,”
J. Eng. Des.
,
30
(
2–3
), pp.
63
101
.
25.
Hamza
,
M.
,
Aly
,
S. G.
, and
Hosny
,
H.
,
2011
, “
An Approach for Generating Architectures for Pervasive Systems From Selected Features
,”
Proceedings of the International Conference on Software Engineering Research and Practice (SERP)
,
Las Vegas, NV
,
July 18–21
.
26.
Albarello
,
N.
,
Welcomme
,
J.-B.
, and
Claude
,
R.
,
2012
, “
A Formal Design Synthesis and Optimization Method for Systems Architectures
,”
Proceedings of the 9th International Conference on Modeling, Optimization & SIMulation
,
Bordeaux, France
,
June 6–8
.
27.
Moullec
,
M.-L.
,
Bouissou
,
M.
,
Jankovic
,
M.
,
Bocquet
,
F.
,
Réquillard
,
J.-C.
,
Maas
,
O.
, and
Forgeot
,
O.
,
2013
, “
Towards System Architecture Generation and Performances Assessment Under Uncertainty Using Bayesian Networks
,”
ASME J. Mech. Des.
,
135
(
4
), p.
041002
.
28.
Helms
,
B.
, and
Shea
,
K.
,
2012
, “
Computational Synthesis of Product Architectures Based on Object-Oriented Graph Grammars
,”
ASME J. Mech. Des.
,
134
(
2
), p.
021008
.
29.
Wyatt
,
D.
,
Wynn
,
D.
, and
Clarkson
,
J.
,
2008
, “
Synthesis of Product Architectures Using a DSM/DMM-Based Approach
,”
Proceedings of the International DSM Conference
,
Stockholm, Sweden
,
Nov. 11–12
, pp.
349
361
.
30.
Wyatt
,
D. F.
,
Wynn
,
D. C.
,
Jarrett
,
J. P.
, and
Clarkson
,
P. J.
,
2012
, “
Supporting Product Architecture Design Using Computational Design Synthesis With Network Structure Constraints
,”
Res. Eng. Des.
,
23
(
1
), pp.
17
52
.
31.
Jankovic
,
M.
,
Holley
,
V.
, and
Yannou
,
B.
,
2012
, “
Multiple-domain Design Scorecards: A Method for Architecture Generation and Evaluation Through Interface Characterisation
,”
J. Eng. Des.
,
23
(
10–11
), pp.
746
766
.
32.
Rosenstein
,
D.
, and
Reich
,
Y.
,
2011
, “
Hierarchical System Concept Generatio
,”
ICED 11–18th International Conference on Engineering Design—Impacting Society Through Engineering Design
,
Copenhagen, Denmark
,
Aug. 15–19
, Vol. 10, No. PART 2, pp.
24
34
.
33.
Condat
,
H.
,
Hein
,
A.
, and
Strobel
,
C.
,
2012
, “
Model-Based Automatic Generation and Selection of Safe Architectures
,”
INCOSE International Symposium
,
Rome, Italy
,
July 9–12
, pp.
645
665
. .
34.
Judt
,
D.
, and
Lawson
,
C.
,
2012
, “
Methodology for automated aircraft systems architecture enumeration and analysis
,”
12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
,
Indianapolis, IN
,
Sept. 17–19
, pp.
1
17
.
35.
Haris
,
K.
, and
Dagli
,
C. H.
,
2011
, “
Adaptive Reconfiguration of Complex System Architecture
,”
Procedia Comput. Sci.
,
6
, pp.
147
152
.
36.
Soininen
,
T.
,
Tiihonen
,
J.
,
Männistö
,
T.
, and
Sulonen
,
R.
,
1998
, “
Towards a General Ontology of Configuration
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
12
(
4
), pp.
357
372
.
37.
Mittal
,
S.
, and
Frayman
,
F.
,
1989
, “
Towards a Generic Model of Configuration Tasks
,”
IJCAI
,
pp. 1395–1401
.
38.
Aldanondo
,
M.
, and
Vareilles
,
E.
,
2008
, “
Configuration for Mass Customization: How to Extend Product Configuration Towards Requirements and Process Configuration
,”
J. Intell. Manuf.
,
19
(
5
), pp.
521
535
.
39.
Hofstedt
,
P.
, and
Schnee-weiss
,
D.
,
2013
, “
FdConfig: A Constraint-Based Interactive Product Configurator
,”
19th International Conference on Applications of Declarative Programming and Knowledge Management
,
Germany
,
Sept. 11–13
, pp.
239
255
.
40.
Brown
,
D. C.
,
1998
, “
Defining Configuring
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
12
(
4
), pp.
301
305
.
41.
Zhang
,
L. L.
,
2014
, “
Product Configuration: A Review of the State-of-the-Art and Future Research
,”
Int. J. Prod. Res.
,
52
(
21
), pp.
6381
6398
.
42.
Falkner
,
A.
,
Haselböck
,
A.
,
Schenner
,
G.
, and
Schreiner
,
H.
,
2011
, “
Modeling and Solving Technical Product Configuration Problems
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
25
(
2
), pp.
115
129
.
43.
Song
,
Z.
, and
Kusiak
,
A.
,
2009
, “
Optimising Product Configurations with a Data- Mining Approach
,”
Int. J. Prod. Res.
,
47
(
7
), pp.
1733
1751
.
44.
Wang
,
L.
,
Ng
,
W. K.
, and
Song
,
B.
,
2011
, “
Extended DCSP Approach on Product Configuration With Cost Estimation Lin
,”
Concurr. Eng.
,
19
(
2
), pp.
123
138
.
45.
Liu
,
Y.
, and
Liu
,
Z.
,
2010
, “
An Integration Method for Reliability Analyses and Product Configuration
,”
Int. J. Adv. Manuf. Technol.
,
50
(
5–8
), pp.
831
841
.
46.
Lee
,
H. J.
, and
Lee
,
J. K.
,
2005
, “
An Effective Customization Procedure With Configurable Standard Models
,”
Decis. Support Syst.
,
41
(
1
), pp.
262
278
.
47.
Xie
,
H.
,
Henderson
,
P.
, and
Kernahan
,
M.
,
2007
, “
Modelling and Solving Engineering Product Configuration Problems by Constraint Satisfaction
,”
Int. J. Prod. Res.
,
43
(
20
), pp.
4455
4469
.
48.
Männistö
,
T.
,
2000
,
A Conceptual Modelling Approach to Product Families and their Evolution, Acta Polytechnical Scandinavica, Mathematics and Computing Series, No. 106, Finnish Academies of Technology, Espoo, Finland, p. 166
.
49.
Männistö
,
T.
,
Soininen
,
T.
,
Tiihonen
,
J.
, and
Sulonen
,
R.
,
1999
, “
Framework and Conceptual Model for Reconfiguration
,” AAAI Technical Report WS-99-05.
50.
Kreuz
,
I.
, and
Roller
,
D.
,
1999
, “
Knowledge Growing Old in Reconfiguration Context Ingo Kreuz Exact Configuration Onboard Starting the Reconfiguring Process
,”
Configuration Papers From the AAAI Workshop, AAAI Technical Report WS99
.
51.
Friedrich
,
G.
,
Ryabokon
,
A.
,
Falkner
,
A. A.
,
Haselböckk
,
A.
,
Schenner
,
G.
, and
Schreiner
,
H.
,
2011
, “
(Re)Configuration Based on Model Generation.
Second Workshop on Logics for Component Configuration
,
Perugia, Italy
,
Sept. 12
, pp.
26
35
.
52.
Jankovic
,
M.
, and
Eckert
,
C.
,
2016
, “
Architecture Decisions in Different Product Classes for Complex Products
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
30
(
3
), pp.
217
234
.
53.
Qasim
,
L.
,
2020
,
System Reconfiguration: A Model Based Approach; From an Ontology to the Methodology Bridging Engineering and Operations, Doctoral dissertation, Department of Industrial Engineering, Ecole Centrale, Supelec, Université Paris-Saclay
.
54.
Labreuche
,
C.
,
2011
, “
A General Framework for Explaining the Results of a Multi-Attribute Preference Model
,”
Artif. Intell.
,
175
(
7–8
), pp.
1410
1448
.
55.
Grabisch
,
M.
,
2013
, “Fuzzy Measures and Integrals in Multicriteria Decision Analysis,”
Wiley Encyclopedia of Operations Research and Management Science
,
J. J.
Cochran
, ed.,
Wiley Online Library
, pp.
1
8
.
56.
Blessing
,
L. T. M.
, and
Chakrabarti
,
A.
,
2009
,
DRM, A Design Research Methodology
,
Springer
,
London
.
57.
Osinga
,
F. P. B.
,
2005
,
Science, Strategy and War: The Strategic Theory of John Boyd
,
Eburon Academic Publishers
,
Delft, The Netherlands
.
You do not currently have access to this content.