Abstract

Reconstruction of gear tooth surfaces from point clouds obtained by noncontact metrology machines constitutes a promising step forward not only for a fast gear inspection but also for reverse engineering and virtual testing and analysis of gear drives. In this article, a new methodology to reconstruct spiral bevel gear tooth surfaces from point clouds obtained by noncontact metrology machines is proposed. The need of application of a filtering process to the point clouds before the process of reconstruction of the gear tooth surfaces has been revealed. Hence, the bilateral filter commonly used for 3D object recognition has been applied and integrated in the proposed methodology. The shape of the contact patterns and the level of the unloaded functions of transmission errors are considered as the criteria to select the appropriate settings of the bilateral filter. The results of the tooth contact analysis of the reconstructed gear tooth surfaces show a good agreement with the design ones. However, stress analyses performed with reconstructed gear tooth surfaces reveal that the maximum level of contact pressures is overestimated. A numerical example based on a spiral bevel gear drive is presented.

References

1.
Kin
,
V.
,
1994
, “
Computerized Analysis of Gear Meshing Based on Coordinate Measurement Data
,”
ASME J. Mech. Des.
,
116
(
3
), pp.
738
744
. 10.1115/1.2919444
2.
Fujio
,
H.
,
Kubo
,
A.
,
Saitoh
,
S.
,
Hanaki
,
H.
, and
Honda
,
T.
,
1994
, “
Laser Holographic Measurement of Tooth Flank Form of Cylindrical Involute Gear
,”
ASME J. Mech. Des.
,
116
(
3
), pp.
721
729
. 10.1115/1.2919442
3.
Mahan
,
T.
,
2019
, “
Pulling at the Digital Thread: Exploring the Tolerance Stack Up Between Automatic Procedures and Expert Strategies in Scan to Print Processes
,”
ASME J. Mech. Des.
,
141
(
2
), p.
021701
. 10.1115/1.4041927
4.
Peng
,
Y.
,
Ni
,
K.
, and
Goch
,
G.
,
2017
, “
A Real Evaluation of Involute Gear Flanks With Three-Dimensional Surface Data
,”
American Gear Manufacturers Association Fall Technical Meeting 2017, AGMA Paper No. 17FTM08
.
5.
Fuentes-Aznar
,
A.
, and
Gonzalez-Perez
,
I.
,
2018
, “
Integrating Non-Contact Metrology in the Process of Analysis and Simulation of Gear Drives
,”
American Gear Manufacturers Association Fall Technical Meeting 2018, AGMA Paper No. 18FTM21
.
6.
Gonzalez-Perez
,
I.
, and
Fuentes-Aznar
,
A.
,
2020
, “Tooth Contact Analysis of Cylindrical Gears Reconstructed From Point Clouds,”
New Approaches to Gear Design and Production, Mechanisms and Machine Science
, Vol.
81
,
Goldfarb
,
V.
,
Trubachev
,
E.
, and
Barmina
,
N.
, eds.,
Springer
,
New York
, pp.
219
237
.
7.
Hoppe
,
H.
,
DeRose
,
T.
,
Duchamp
,
T.
,
McDonald
,
J.
, and
Stuetzle
,
W.
,
1992
, “
Surface Reconstruction From Unorganized Points
,”
Comput. Graph. (ACM)
,
26
(
2
), pp.
71
78
. 10.1145/142920.134011
8.
Fleishman
,
S.
,
Drori
,
I.
, and
Cohen-Or
,
D.
,
2003
, “
Bilateral Mesh Denoising
,”
ACM SIGGRAPH 2003 Papers, SIGGRAPH ’03
,
San Diego, CA
,
July
.
9.
Tomasi
,
C.
, and
Manduchi
,
R.
,
1998
, “
Bilateral Filtering for Gray and Color Images
,”
Proceedings of the IEEE International Conference on Computer Vision
,
Santa Barbara, CA
,
June 25
, pp.
950
953
.
10.
Digne
,
J.
, and
Franchis
,
C. D.
,
2017
, “
The Bilateral Filter for Point Clouds
,”
Image Process. On Line
,
7
, pp.
278
287
. 10.5201/ipol.2017.179
11.
Gill
,
P. E.
,
Murray
,
W.
, and
Wright
,
M. H.
,
1997
,
Practical Optimization
,
Academic Press
,
London
.
12.
Nocedall
,
J.
, and
Wright
,
S. J.
,
1999
,
Numerical Optimization
,
Springer
,
Berlin
.
13.
Samet
,
H.
,
2006
,
Foundations of Multidimensional and Metric Data Structures
,
Morgan Kaufmann
,
San Francisco, CA
.
14.
Piegl
,
L.
, and
Tiller
,
W.
,
1995
,
The NURBS Book
,
Springer-Verlag
,
New York
.
15.
Fuentes-Aznar
,
A.
,
Iglesias-Victoria
,
P.
,
Eisele
,
S.
, and
Gonzalez-Perez
,
I.
,
2016
, “
Fillet Geometry Modeling for Nongenerated Gear Tooth Surfaces
,”
International Conference on Power Transmissions
,
Chonqing, China
,
Oct. 27–30
, pp.
431
436
.
16.
Sheveleva
,
G. I.
,
Volkov
,
A. E.
, and
Medvedev
,
V. I.
,
2007
, “
Algorithms for Analysis of Meshing and Contact of Spiral Bevel Gears
,”
Mech. Mach. Theory
,
42
(
2
), pp.
198
215
. 10.1016/j.mechmachtheory.2006.02.009
17.
Fuentes
,
A.
,
Ruiz-Orzaez
,
R.
, and
Gonzalez-Perez
,
I.
,
2014
, “
Computerized Design, Simulation of Meshing, and Finite Element Analysis of Two Types of Geometry of Curvilinear Cylindrical Gears
,”
Comput. Methods Appl. Mech. Eng.
,
272
, pp.
321
339
. 10.1016/j.cma.2013.12.017
18.
Gonzalez-Perez
,
I.
, and
Fuentes-Aznar
,
A.
,
2017
, “
Analytical Determination of Basic Machine-Tool Settings for Generation of Spiral Bevel Gears and Compensation of Errors of Alignment in the Cyclo-Palloid System
,”
Int. J. Mech. Sci.
,
120
, pp.
91
104
. 10.1016/j.ijmecsci.2016.11.018
19.
Litvin
,
F. L.
, and
Fuentes
,
A.
,
2004
,
Gear Geometry and Applied Theory
,
Cambridge University Press
,
New York
.
20.
Dassault Systemes
,
2019
,
Abaqus/Standard Analysis User’s Guide
,
Dassault Systemes Inc.
,
Waltham, MA
.
You do not currently have access to this content.