Abstract

Reliability-based design optimization (RBDO) is receiving more attention from researchers because it can help to minimize cost reasonably in practical engineering. A large number of methods have been proposed to solve RBDO problems, most of which are based on the theory of the first-order reliability method (FORM). Therefore, the deficiencies of the FORM limit applications of general RBDO methods such as the dependency on the minimum performance target point (MPTP). In this study, we apply the fractional moment-based maximum entropy method to the RBDO problems for the first time and propose a novel RBDO method using the quantile-based sequential optimization and reliability assessment method. Because the proposed method is MPTP free, the shortcomings of FORM-based RBDO methods can be overcome. To demonstrate the performance of the proposed method, we test five numerical examples and one engineering example by the proposed method and three popular RBDO methods. The results show that the proposed method can balance the accuracy and the efficiency compared with other methods.

References

1.
Cui
,
T.
,
Allison
,
J. T.
, and
Wang
,
P.
,
2020
, “
A Comparative Study of Formulations and Algorithms for Reliability-Based Co-Design Problems
,”
ASME J. Mech. Des.
,
142
(
3
), p.
031104
. https://doi.org/10.1115/1.4045299
2.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Du
,
L.
,
2005
, “
Enriched Performance Measure Approach for Reliability-Based Design Optimization
,”
AIAA J.
,
43
(
4
), pp.
874
884
. 10.2514/1.6648
3.
Aoues
,
Y.
, and
Chateauneuf
,
A.
,
2010
, “
Benchmark Study of Numerical Methods for Reliability-Based Design Optimization
,”
Struct. Multidiscip. Opt.
,
41
(
2
), pp.
277
294
. 10.1007/s00158-009-0412-2
4.
Du
,
X.
, and
Chen
,
W.
,
2004
, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
225
233
. 10.1115/1.1649968
5.
Lim
,
J.
,
Lee
,
B.
, and
Lee
,
I.
,
2015
, “
Sequential Optimization and Reliability Assessment Based on Dimension Reduction Method for Accurate and Efficient Reliability-Based Design Optimization
,”
J. Mech. Sci. Technol.
,
29
(
4
), pp.
1349
1354
. 10.1007/s12206-015-0303-y
6.
Cho
,
T. M.
, and
Lee
,
B. C.
,
2011
, “
Reliability-Based Design Optimization Using Convex Linearization and Sequential Optimization and Reliability Assessment Method
,”
Struct. Safety
,
33
(
1
), pp.
42
50
. 10.1016/j.strusafe.2010.05.003
7.
Zhu
,
P.
,
Zhang
,
Y.
, and
Chen
,
G.
,
2011
, “
Metamodeling Development for Reliability-Based Design Optimization of Automotive Body Structure
,”
Comput. Ind.
,
62
(
7
), pp.
729
741
. 10.1016/j.compind.2011.05.008
8.
Weiji
,
L.
, and
Li
,
Y.
,
1994
, “
An Effective Optimization Procedure Based on Structural Reliability
,”
Comput. Struct.
,
52
(
5
), pp.
1061
1067
. 10.1016/0045-7949(94)90090-6
9.
Nikolaidis
,
E.
, and
Burdisso
,
R.
,
1988
, “
Reliability Based Optimization: A Safety Index Approach
,”
Comput. Struct.
,
28
(
6
), pp.
781
788
. 10.1016/0045-7949(88)90418-X
10.
Tu
,
J.
,
Choi
,
K. K.
, and
Park
,
Y. H.
,
1999
, “
A New Study on Reliability-Based Design Optimization
,”
J. Mech. Des.
,
121
(
4
), pp.
557
564
. 10.1115/1.2829499
11.
Lee
,
I.
,
Choi
,
K. K.
, and
Gorsich
,
D.
,
2010
, “
Sensitivity Analyses of FORM-Based and DRM-Based Performance Measure Approach (PMA) for Reliability-Based Design Optimization (RBDO)
,”
Int. J. Numerical Met. Eng.
,
82
(
1
), pp.
26
46
. 10.1002/nme.2752
12.
Lee
,
J. O.
,
Yang
,
Y. S.
, and
Ruy
,
W. S.
,
2002
, “
A Comparative Study on Reliability-Index and Target-Performance-Based Probabilistic Structural Design Optimization
,”
Comput. Struct.
,
80
(
3–4
), pp.
257
269
. 10.1016/S0045-7949(02)00006-8
13.
Lee
,
I.
,
Choi
,
K. K.
,
Du
,
L.
, and
Gorsich
,
D.
,
2008
, “
Inverse Analysis Method Using MPP-Based Dimension Reduction for Reliability-Based Design Optimization of Nonlinear and Multi-Dimensional Systems
,”
Comput. Met. Appl. Mech. Eng.
,
198
(
1
), pp.
14
27
. 10.1016/j.cma.2008.03.004
14.
Wu
,
Y. T.
,
Millwater
,
H. R.
, and
Cruse
,
T. A.
,
1990
, “
Advanced Probabilistic Structural Analysis Method for Implicit Performance Functions
,”
AIAA J.
,
28
(
9
), pp.
1663
1669
. 10.2514/3.25266
15.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Park
,
Y. H.
,
2003
, “
Hybrid Analysis Method for Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
125
(
2
), pp.
221
232
. 10.1115/1.1561042
16.
Yang
,
D.
,
2010
, “
Chaos Control for Numerical Instability of First Order Reliability Method
,”
Commun. Nonlinear Sci. Numerical Simul.
,
15
(
10
), pp.
3131
3141
. 10.1016/j.cnsns.2009.10.018
17.
Yang
,
D.
, and
Yi
,
P.
,
2009
, “
Chaos Control of Performance Measure Approach for Evaluation of Probabilistic Constraints
,”
Struct. Multidiscip. Opt.
,
38
(
1
), p.
83
. 10.1007/s00158-008-0270-3
18.
Keshtegar
,
B.
,
Hao
,
P.
, and
Meng
,
Z.
,
2017
, “
A Self-Adaptive Modified Chaos Control Method for Reliability-Based Design Optimization
,”
Struct. Multidiscip. Opt.
,
55
(
1
), pp.
63
75
. 10.1007/s00158-016-1471-9
19.
Keshtegar
,
B.
, and
Hao
,
P.
,
2018
, “
A Hybrid Descent Mean Value for Accurate and Efficient Performance Measure Approach of Reliability-Based Design Optimization
,”
Comput. Met. Appl. Mech. Eng.
,
336
, pp.
237
259
. 10.1016/j.cma.2018.03.006
20.
Meng
,
Z.
, and
Zhou
,
H.
,
2018
, “
New Target Performance Approach for a Super Parametric Convex Model of Non-Probabilistic Reliability-Based Design Optimization
,”
Comput. Met. Appl. Mech. Eng.
,
339
, pp.
644
662
. 10.1016/j.cma.2018.05.009
21.
Chen
,
X.
,
Hasselman
,
T.
, and
Neill
,
D.
,
1997
, “
Reliability Based Structural Design Optimization for Practical Applications
,”
Proceedings 38th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference and Exhibit and AIAA/ASME/AHS Adaptive Structural Forum
,
Kissimmee, FL
,
Apr. 7–10
, p.
1403
.
22.
Liang
,
J.
,
Mourelatos
,
Z. P.
, and
Tu
,
J.
,
2008
, “
A Single-Loop Method for Reliability-Based Design Optimisation
,”
Int. J. Product Develop.
,
5
(
1–2
), pp.
76
92
. 10.1504/IJPD.2008.016371
23.
Meng
,
Z.
,
Yang
,
D.
,
Zhou
,
H.
, and
Wang
,
B. P.
,
2018
, “
Convergence Control of Single Loop Approach for Reliability-Based Design Optimization
,”
Struct. Multidiscip. Opt.
,
57
(
3
), pp.
1079
1091
. 10.1007/s00158-017-1796-z
24.
Meng
,
Z.
, and
Keshtegar
,
B.
,
2019
, “
Adaptive Conjugate Single-Loop Method for Efficient Reliability-Based Design and Topology Optimization
,”
Comput. Met. Appl. Mech. Eng.
,
344
, pp.
95
119
. 10.1016/j.cma.2018.10.009
25.
Valdebenito
,
M. A.
, and
Schuëller
,
G. I.
,
2010
, “
A Survey on Approaches for Reliability-Based Optimization
,”
Struct. Multidiscip. Opt.
,
42
(
5
), pp.
645
663
. 10.1007/s00158-010-0518-6
26.
Chen
,
Z.
,
Qiu
,
H.
,
Gao
,
L.
, and
Li
,
P.
,
2013
, “
An Optimal Shifting Vector Approach for Efficient Probabilistic Design
,”
Struct. Multidiscip. Opt.
,
47
(
6
), pp.
905
920
. 10.1007/s00158-012-0873-6
27.
Yi
,
P.
,
Zhu
,
Z.
, and
Gong
,
J.
,
2016
, “
An Approximate Sequential Optimization and Reliability Assessment Method for Reliability-Based Design Optimization
,”
Struct. Multidiscip. Opt.
,
54
(
6
), pp.
1367
1378
. 10.1007/s00158-016-1478-2
28.
Chen
,
Z.
,
Qiu
,
H.
,
Gao
,
L.
,
Su
,
L.
, and
Li
,
P.
,
2013
, “
An Adaptive Decoupling Approach for Reliability-Based Design Optimization
,”
Comput. Struct.
,
117
, pp.
58
66
. 10.1016/j.compstruc.2012.12.001
29.
Du
,
X.
,
2008
, “
Saddlepoint Approximation for Sequential Optimization and Reliability Analysis
,”
ASME J. Mech. Des.
,
130
(
1
), p.
011011
. https://doi.org/10.1115/1.2717225
30.
Yin
,
X.
, and
Chen
,
W.
,
2006
, “
Enhanced Sequential Optimization and Reliability Assessment Method for Probabilistic Optimization With Varying Design Variance
,”
Struct. Infrastruct. Eng.
,
2
(
3–4
), pp.
261
275
. 10.1080/15732470600590317
31.
Li
,
G.
,
Yang
,
H.
, and
Zhao
,
G.
,
2020
, “
A new Efficient Decoupled Reliability-Based Design Optimization Method With Quantiles
,”
Struct. Multidiscip. Opt.
,
61
(
2
), pp.
635
647
. 10.1007/s00158-019-02384-7
32.
Hyeon Ju
,
B.
, and
Chai Lee
,
B.
,
2008
, “
Reliability-Based Design Optimization Using a Moment Method and a Kriging Metamodel
,”
Eng. Opt.
,
40
(
5
), pp.
421
438
. 10.1080/03052150701743795
33.
Kang
,
H. Y.
, and
Kwak
,
B. M.
,
2009
, “
Application of Maximum Entropy Principle for Reliability-Based Design Optimization
,”
Struct. Multidiscip. Opt.
,
38
(
4
), pp.
331
346
. 10.1007/s00158-008-0299-3
34.
He
,
W.
,
Zeng
,
Y.
, and
Li
,
G.
,
2019
, “
A Novel Structural Reliability Analysis Method via Improved Maximum Entropy Method Based on Nonlinear Mapping and Sparse Grid Numerical Integration
,”
Mech. Syst. Signal Process.
,
133
, p.
106247
. 10.1016/j.ymssp.2019.106247
35.
Xu
,
J.
, and
Kong
,
F.
,
2019
, “
Adaptive Scaled Unscented Transformation for Highly Efficient Structural Reliability Analysis by Maximum Entropy Method
,”
Struct. Safety
,
76
, pp.
123
134
. 10.1016/j.strusafe.2018.09.001
36.
Zhang
,
X.
,
He
,
W.
,
Zhang
,
Y.
, and
Pandey
,
M. D.
,
2017
, “
An Effective Approach for Probabilistic Lifetime Modelling Based on the Principle of Maximum Entropy With Fractional Moments
,”
Appl. Math. Model.
,
51
, pp.
626
642
. 10.1016/j.apm.2017.07.036
37.
Xu
,
J.
,
2016
, “
A new Method for Reliability Assessment of Structural Dynamic Systems With Random Parameters
,”
Struct. Safety
,
60
, pp.
130
143
. 10.1016/j.strusafe.2016.02.005
38.
Xu
,
J.
, and
Zhu
,
S.
,
2019
, “
An Efficient Approach for High-Dimensional Structural Reliability Analysis
,”
Mech. Syst. Signal Process.
,
122
, pp.
152
170
. 10.1016/j.ymssp.2018.12.007
39.
Li
,
G.
,
He
,
W.
, and
Zeng
,
Y.
,
2019
, “
An Improved Maximum Entropy Method via Fractional Moments With Laplace Transform for Reliability Analysis
,”
Struct. Multidiscip. Opt.
,
59
(
4
), pp.
1301
1320
. 10.1007/s00158-018-2129-6
40.
Xu
,
J.
,
Dang
,
C.
, and
Kong
,
F.
,
2017
, “
Efficient Reliability Analysis of Structures With the Rotational Quasi-Symmetric Point-and the Maximum Entropy Methods
,”
Mech. Syst. Signal Process.
,
95
, pp.
58
76
. 10.1016/j.ymssp.2017.03.019
41.
Zhang
,
X.
, and
Pandey
,
M. D.
,
2013
, “
Structural Reliability Analysis Based on the Concepts of Entropy, Fractional Moment and Dimensional Reduction Method
,”
Struct. Safety
,
43
, pp.
28
40
. 10.1016/j.strusafe.2013.03.001
42.
Novi Inverardi
,
P. L.
, and
Tagliani
,
A.
,
2003
, “
Maximum Entropy Density Estimation From Fractional Moments
,”
Commun. Statistics Theor. Met.
,
32
(
2
), pp.
327
345
. 10.1081/STA-120018189
43.
He
,
W.
,
Li
,
G.
,
Hao
,
P.
, and
Zeng
,
Y.
,
2019
, “
Maximum Entropy Method-Based Reliability Analysis With Correlated Input Variables via Hybrid Dimension-Reduction Method
,”
ASME J. Mech. Des.
,
141
(
10
), p.
101405
. 10.1115/1.4043734
44.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Du
,
L.
,
2005
, “
Adaptive Probability Analysis Using an Enhanced Hybrid Mean Value Method
,”
Struct. Multidiscip. Opt.
,
29
(
2
), pp.
134
148
. 10.1007/s00158-004-0452-6
45.
Meng
,
Z.
,
Zhang
,
Z.
, and
Zhou
,
H.
,
2020
, “
A Novel Experimental Data-Driven Exponential Convex Model for Reliability Assessment With Uncertain-but-Bounded Parameters
,”
Appl. Math. Model.
,
77
, pp.
773
787
. 10.1016/j.apm.2019.08.010
46.
Yang
,
R. J.
, and
Gu
,
L.
,
2004
, “
Experience With Approximate Reliability-Based Optimization Methods
,”
Struct. Multidiscip. Opt.
,
26
(
1–2
), pp.
152
159
. 10.1007/s00158-003-0319-2
47.
Keshtegar
,
B.
,
Hao
,
P.
,
Wang
,
Y.
, and
Hu
,
Q.
,
2018
, “
An Adaptive Response Surface Method and Gaussian Global-Best Harmony Search Algorithm for Optimization of Aircraft Stiffened Panels
,”
Appl. Soft Comput.
,
66
, pp.
196
207
. 10.1016/j.asoc.2018.02.020
You do not currently have access to this content.