Abstract

Nonassembled products, which are produced from a raw material and post-processed to a final form without any assembly steps, form a large and potentially growing share of the manufacturing sector. However, the design for manufacturing literature has largely focused on assembled products and does not necessarily apply to nonassembled products. In this paper, we review the literature on design for nonassembly (DFNA) and the broader literature on design for manufacturing that has design guidelines and metrics applicable to nonassembled products, including both monolithic single-part products and nonassembly mechanisms. Our review focuses on guidelines that apply across multiple manufacturing processes. We identify guidelines and metrics that seek to reduce costs as well as provide differentiated products across a product family. We cluster the guidelines using latent semantic analysis and find that existing DFNA guidelines fall into four main categories pertaining to (1) manufacturing process, (2) material, (3) tolerance, and (4) geometry. We also identify existing product family metrics that can be modified for nonassembled products to measure some aspects of these categories. Finally, we discuss possible future research directions to more accurately characterize the relationships between design variables and manufacturing costs, including investigating factors related to the complexity of operations at particular process steps and across process steps.

References

1.
Meyer
,
M. H.
, and
Dalal
,
D.
,
2002
, “
Managing Platform Architectures and Manufacturing Processes for Nonassembled Products
,”
J. Prod. Innovat. Manag.
,
19
(
4
), pp.
277
293
. 10.1111/1540-5885.1940277
2.
Lager
,
T.
,
2017
, “
A Conceptual Framework for Platform-Based Design of Non-Assembled Products
,”
Technovation
,
68
, pp.
20
34
. 10.1016/j.technovation.2017.09.002
3.
Nicholson
,
J. R.
, and
Noonan
,
R.
,
2014
,
What Is Made in America?
,
Economics and Statistics Administration
,
Washington, D.C.
4.
Bralla
,
J. G.
,
1999
,
Design for Manufacturability Handbook
,
McGraw-Hill
,
New York
.
5.
Boothroyd
,
G.
,
Dewhurst
,
P.
, and
Knight
,
W. A.
,
2001
,
Product Design for Manufacture and Assembly, Revised and Expanded
,
CRC Press
,
Boca Raton
.
6.
Anderson
,
D. M.
,
2014
,
Design for Manufacturability: How to Use Concurrent Engineering to Rapidly Develop Low-Cost, High-Quality Products for Lean Production
,
CRC Press
,
Boca Raton
.
7.
Cuellar
,
J. S.
,
Smit
,
G.
,
Plettenburg
,
D.
, and
Zadpoor
,
A.
,
2018
, “
Additive Manufacturing of Non-Assembly Mechanisms
,”
Addit. Manuf.
,
21
, pp.
150
158
. 10.1016/j.addma.2018.02.004
8.
Electric
,
G.
,
1960
,
Manufacturing Producibility Handbook
,
General Electric Manufacturing Services
,
Schenectady, NY
.
9.
Boothroyd
,
G.
,
Murch
,
L.
, and
Poli
,
C.
,
1978
,
Handbook of Feeding and Orienting Techniques for Small Parts
,
University of Massachusetts, Department of Mechanical Engineering
,
Amherst, MA
.
10.
Scarr
,
A.
, and
McKeown
,
P.
,
1986
, “
Product Design for Automated Manufacture and Assembly
,”
CIRP Ann.
,
35
(
1
), pp.
1
5
. 10.1016/S0007-8506(07)61826-5
11.
Stoll
,
H. W.
,
1988
, “
Design for Manufacture
,”
Manuf. Eng.
,
100
(
1
), pp.
67
73
.
12.
Kirkland
,
C.
,
1988
, “
Meet Two Architects of Design-Integrated Manufacturing
,”
Plast. World
,
46
(
12
), pp.
44
45
.
13.
Kobe
,
G.
,
1990
, “
DFMA: Design for Manufacture and Assembly
,”
Automotive Industries
,
170
(
3
), pp.
34
38
.
14.
Boothroyd
,
G.
,
1994
, “
Product Design for Manufacture and Assembly
,”
Comput.-Aided Des.
,
26
(
7
), pp.
505
520
. 10.1016/0010-4485(94)90082-5
15.
Stoll
,
H. W.
,
1986
, “
Design for Manufacture: An Overview
,”
ASME Appl. Mech. Rev.
,
39
(
9
), pp.
1356
1364
. 10.1115/1.3149526
16.
Edwards
,
K. L.
,
2002
, “
Towards More Strategic Product Design for Manufacture and Assembly: Priorities for Concurrent Engineering
,”
Mater. Des.
,
23
(
7
), pp.
651
656
. 10.1016/S0261-3069(02)00050-X
17.
GE Additive
,
2018
, “
First Additive Manufactured Part to be Installed on GEnx Commercial Airline Engines
,”
GE Additive, last modified November 2, 2018
, https://www.ge.com/additive/press-releases/first-additive-manufactured-part-be-installed-genx-commercial-airline-engines, Accessed May 7, 2020.
18.
Laureijs
,
R. E.
,
Fuchs
,
E. R. H.
, and
Whitefoot
,
K. S.
,
2018
, “
Is More Less? Benefits and Costs of High-Variety Production in Nonassembled Manufacturing
,”
ASME J. Mech. Des.
,
141
(
6
), p.
061703
. 10.1115/1.4041943
19.
Dapkus
,
P. D.
,
1982
, “
Metalorganic Chemical Vapor Deposition
,”
Annu. Rev. Mater. Sci.
,
12
(
1
), pp.
243
269
. 10.1146/annurev.ms.12.080182.001331
20.
Assemble
,
2020
,
Merriam-Webster.com
, https://www.merriamwebster.com/dictionary/assemble, Accessed May 14, 2020.
21.
De Laurentis
,
K. J.
,
Kong
,
F. F.
, and
Mavroidis
,
C.
,
2002
, “
Procedure for Rapid Fabrication of Non-Assembly Mechanisms With Embedded Components
,”
ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Montreal, QC, Canada
,
Sept. 29–Oct. 2
, pp.
1239
1245
.
22.
Wu
,
S.-Y.
,
Yang
,
C.
,
Hsu
,
W.
, and
Lin
,
L.
,
2015
, “
3D-Printed Microelectronics for Integrated Circuitry and Passive Wireless Sensors
,”
Microsyst. Nanoeng.
,
1
(
1
), p.
15013
. 10.1038/micronano.2015.13
23.
Sbriglia
,
L. R.
,
Baker
,
A. M.
,
Thompson
,
J. M.
,
Morgan
,
R. V.
,
Wachtor
,
A. J.
, and
Bernardin
,
J. D.
,
2016
, “Embedding Sensors in FDM Plastic Parts During Additive Manufacturing,”
Topics in Modal Analysis & Testing
, Vol.
10
,
M.
Mains
, ed.,
Springer
,
New York
, pp.
205
214
.
24.
Yang
,
Y. Q.
,
Su
,
X. B.
,
Wang
,
D.
, and
Chen
,
Y. H.
,
2011
, “
Rapid Fabrication of Metallic Mechanism Joints by Selective Laser Melting
,”
Proc. Inst. Mech. Eng. B
,
225
(
12
), pp.
2249
2256
. 10.1177/0954405411407997
25.
Calì
,
J.
,
Calian
,
D. A.
,
Amati
,
C.
,
Kleinberger
,
R.
,
Steed
,
A.
,
Kautz
,
J.
, and
Weyrich
,
T.
,
2012
, “
3D-Printing of Non-Assembly, Articulated Models
,”
ACM Trans. Graph.
,
31
(
6
), pp.
130:1
130:8
. 10.1145/2366145.2366149
26.
Sirray
, “
Mug Coffee Cup Yellow Tableware Ceramic
,” https://favpng.com/, last modified July 13, 2017, Accessed May 14, 2020.
27.
Hipster2987
, “
Cup Holder
,” https://favpng.com/, last modified January 23, 2018, Accessed May 14, 2020.
28.
GGelmer
, “
Car Dealership 2019 Infinity QX50
,” https://favpng.com/, last modified December 11, 2017, Accessed May 14, 2020.
29.
DRM Associates
,
2019
, “
Design for Manufacturability/Assembly Guidelines
,” http://www.npd-solutions.com/dfmguidelines.html, DRM Associates, Accessed January 14, 2019.
30.
Meisel
,
N. A.
,
Woods
,
M. R.
,
Simpson
,
T. W.
, and
Dickman
,
C. J.
,
2017
, “
Redesigning a Reaction Control Thruster for Metal-Based Additive Manufacturing: A Case Study in Design for Additive Manufacturing
,”
ASME J. Mech. Des.
,
139
(
10
), p.
100903
. 10.1115/1.4037250
31.
Booth
,
J. W.
,
Alperovich
,
J.
,
Chawla
,
P.
,
Ma
,
J.
,
Reid
,
T. N.
, and
Ramani
,
K.
,
2017
, “
The Design for Additive Manufacturing Worksheet
,”
ASME J. Mech. Des.
,
139
(
10
), p.
100904
. 10.1115/1.4037251
32.
Nie
,
Z.
,
Jung
,
S.
,
Kara
,
L. B.
, and
Whitefoot
,
K. S.
,
2020
, “
Optimization of Part Consolidation for Minimum Production Costs and Time Using Additive Manufacturing
,”
ASME J. Mech. Des.
,
142
(
7
), p.
072001
. 10.1115/1.4045106
33.
Yang
,
S.
,
Santoro
,
F.
,
Sulthan
,
M. A.
, and
Zhao
,
Y. F.
,
2019
, “
A Numerical-Based Part Consolidation Candidate Detection Approach With Modularization Considerations
,”
Res. Eng. Des.
,
30
(
1
), pp.
63
83
. 10.1007/s00163-018-0298-3
34.
Yang
,
S.
,
Santoro
,
F.
, and
Zhao
,
Y. F.
,
2018
, “
Towards a Numerical Approach of Finding Candidates for Additive Manufacturing-Enabled Part Consolidation
,”
ASME J. Mech. Des.
,
140
(
4
), p.
041701
. 10.1115/1.4038923
35.
Kuo
,
T.-C.
,
Huang
,
S. H.
, and
Zhang
,
H.-C.
,
2001
, “
Design for Manufacture and Design for ‘X’: Concepts, Applications, and Perspectives
,”
Comput. Ind. Eng.
,
41
(
3
), pp.
241
260
. 10.1016/S0360-8352(01)00045-6
36.
Suh
,
N. P.
,
Bell
,
A. C.
, and
Gossard
,
D. C.
,
1978
, “
On an Axiomatic Approach to Manufacturing and Manufacturing Systems
,”
ASME J. Eng. Ind.
,
100
(
2
), pp.
127
130
. 10.1115/1.3439399
37.
Boothroyd
,
G.
,
1996
, “Design for Manufacture and Assembly: The Boothroyd-Dewhurst Experience,”
Design for X: Concurrent Engineering Imperatives
,
G. Q.
Huang
, ed.,
Springer Science+Business Media
,
Dordrecht
, pp.
19
40
.
38.
Adachi
,
T.
,
Kobayakawa
,
S.
,
Koh
,
H.
, and
Inoue
,
I.
,
1985
, “Bridging the Gap Between a Product Design Sector and a Production Sector: Conceptualization and a Support Tool,”
Toward the Factory of the Future
,
H. J.
Bullinger
, and
H. J.
Warnecke
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
466
471
.
39.
Swift
,
K. G.
, and
Booker
,
J. D.
,
2003
,
Process Selection: From Design to Manufacture
,
Elsevier
,
Oxford, UK
.
40.
van Vliet
,
H. W.
, and
van Luttervelt
,
K.
,
2004
, “
Development and Application of a Mixed Product/Process-Based DFM Methodology
,”
Int. J. Comput. Integr. Manuf.
,
17
(
3
), pp.
224
234
. 10.1080/09511920310001600868
41.
Luo
,
T.
,
Luo
,
W.
, and
Lu
,
Z.
,
2007
, “
DFMA for Internet-Based Collaborative Design
,”
11th International Conference on Computer Supported Cooperative Work in Design
,
Melbourne, Victoria, Australia
,
Apr. 26–28
, pp.
226
232
.
42.
Dewhurst
,
P.
,
1988
, “
Cutting Assembly Costs With Molded Parts
,”
Mach. Des.
,
60
(
17
), pp.
68
72
.
43.
Chen
,
Y.
, and
Zhezheng
,
C.
,
2011
, “
Joint Analysis in Rapid Fabrication of Non-Assembly Mechanisms
,”
Rapid Prototyp. J.
,
17
(
6
), pp.
408
417
. 10.1108/13552541111184134
44.
Cuellar
,
J. S.
,
Smit
,
G.
,
Zadpoor
,
A. A.
, and
Breedveld
,
P.
,
2018
, “
Ten Guidelines for the Design of Non-Assembly Mechanisms: The Case of 3D-Printed Prosthetic Hands
,”
Proc. Inst. Mech. Eng., Part H
,
232
(
9
), pp.
962
971
. 10.1177/0954411918794734
45.
Bernard
,
A. B.
,
Redding
,
S. J.
, and
Schott
,
P. K.
,
2010
, “
Multiple-Product Firms and Product Switching
,”
Am. Econ. Rev.
,
100
(
1
), pp.
70
97
. 10.1257/aer.100.1.70
46.
Kekre
,
S.
, and
Srinivasan
,
K.
,
1990
, “
Broader Product Line: A Necessity to Achieve Success?
,”
Manage. Sci.
,
36
(
10
), pp.
1216
1232
. 10.1287/mnsc.36.10.1216
47.
Jiao
,
J. R.
,
Simpson
,
T. W.
, and
Siddique
,
Z.
,
2007
, “
Product Family Design and Platform-Based Product Development: A State-of-the-Art Review
,”
J. Intell. Manuf.
,
18
(
1
), pp.
5
29
. 10.1007/s10845-007-0003-2
48.
Pirmoradi
,
Z.
,
Wang
,
G. G.
, and
Simpson
,
T. W.
,
2014
, “A Review of Recent Literature in Product Family Design and Platform-Based Product Development,”
Advances in Product Family and Product Platform Design
,
T. W.
Simpson
,
J.
Jiao
,
Z.
Siddique
, and
K.
Hölttä-Otto
, eds.,
Springer
,
New York
, pp.
1
46
.
49.
Thevenot
,
H. J.
, and
Simpson
,
T. W.
,
2007
, “
A Comprehensive Metric for Evaluating Component Commonality in a Product Family
,”
J. Eng. Des.
,
18
(
6
), pp.
577
598
. 10.1080/09544820601020014
50.
Johnson
,
M. D.
, and
Kirchain
,
R. E.
,
2014
, “Developing and Assessing Commonality Metrics for Product Families,”
Advances in Product Family and Product Platform Design
,
T.W.
Simpson
,
J.
Jiao
,
Z.
Siddique
, and
K.
Hölttä-Otto
, eds.,
Springer
,
New York
, pp.
473
502
.
51.
Wacker
,
J. G.
, and
Treleven
,
M.
,
1986
, “
Component Part Standardization: An Analysis of Commonality Sources and Indices
,”
J. Oper. Manage.
,
6
(
2
), pp.
219
244
. 10.1016/0272-6963(86)90026-4
52.
Collier
,
D. A.
,
1981
, “
The Measurement and Operating Benefits of Component Part Commonality
,”
Decis. Sci.
,
12
(
1
), pp.
85
96
. 10.1111/j.1540-5915.1981.tb00063.x
53.
Kota
,
S.
,
Sethuraman
,
K.
, and
Miller
,
R.
,
2000
, “
A Metric for Evaluating Design Commonality in Product Families
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
403
410
. 10.1115/1.1320820
54.
Gershenson
,
J. K.
,
Prasad
,
G. J.
, and
Zhang
,
Y.
,
2004
, “
Product Modularity: Measures and Design Methods
,”
J. Eng. Des.
,
15
(
1
), pp.
33
51
. 10.1080/0954482032000101731
55.
Robertson
,
D.
, and
Ulrich
,
K.
,
1998
, “
Planning for Product Platforms
,”
Sloan Manag. Rev.
,
39
(
4
), pp.
19
31
.
56.
Simpson
,
T. W.
,
Maier
,
J. R.
, and
Mistree
,
F.
,
2001
, “
Product Platform Design: Method and Application
,”
Res. Eng. Des.
,
13
(
1
), pp.
2
22
. 10.1007/s001630100002
57.
Simpson
,
T. W.
,
2004
, “
Product Platform Design and Customization: Status and Promise
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
18
(
1
), pp.
3
20
. 10.1017/S0890060404040028
58.
Meyer
,
M. H.
, and
Lehnerd
,
A. P.
,
1997
,
The Power of Product Platforms: Building Value and Cost Leadership
,
Free Press
,
New York
.
59.
Martin
,
M. V.
, and
Ishii
,
K.
,
1997
, “
Design for Variety: Development of Complexity Indices and Design Charts
,”
ASME Design Engineering Technical Conferences
,
Sacramento, CA
,
Sept. 14–17
.
60.
Jiao
,
J.
, and
Tseng
,
M. M.
,
2000
, “
Understanding Product Family for Mass Customization by Developing Commonality Indices
,”
J. Eng. Des.
,
11
(
3
), pp.
225
243
. 10.1080/095448200750021003
61.
Siddique
,
Z.
,
Rosen
,
D. W.
, and
Wang
,
N.
,
1998
, “
On the Applicability of Product Variety Design Concepts to Automotive Platform Commonality
,”
ASME Design Engineering Technical Conferences—Design Theory & Methodology
,
Atlanta, GA
,
Sept. 13–16
.
62.
Simpson
,
T. W.
,
Seepersad
,
C. C.
, and
Mistree
,
F.
,
2001
, “
Balancing Commonality and Performance Within the Concurrent Design of Multiple Products in a Product Family
,”
Concurrent Eng.
,
9
(
3
), pp.
177
190
. 10.1106/T4H4-E0AT-P6XL-0U7H
63.
Messac
,
A.
,
Martinez
,
M. P.
, and
Simpson
,
T. W.
,
2002
, “
Introduction of a Product Family Penalty Function Using Physical Programming
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
164
172
. 10.1115/1.1467602
64.
Zhang
,
M.
, and
Tseng
,
M. M.
,
2007
, “
A Product and Process Modeling Based Approach to Study Cost Implications of Product Variety in Mass Customization
,”
IEEE Trans. Eng. Manage.
,
54
(
1
), pp.
130
144
. 10.1109/TEM.2006.889072
65.
Deerwester
,
S.
,
Dumais
,
S. T.
,
Furnas
,
G. W.
,
Landauer
,
T. K.
, and
Harshman
,
R.
,
1990
, “
Indexing by Latent Semantic Analysis
,”
J. Am. Soc. Inf. Sci.
,
41
(
6
), pp.
391
407
. 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
66.
Berry
,
M. W.
,
Dumais
,
S. T.
, and
O’Brien
,
G. W.
,
1995
, “
Using Linear Algebra for Intelligent Information Retrieval
,”
SIAM Rev.
,
37
(
4
), pp.
573
595
. 10.1137/1037127
67.
Landauer
,
T. K.
,
Foltz
,
P. W.
, and
Laham
,
D.
,
1998
, “
An Introduction to Latent Semantic Analysis
,”
Discourse Process.
,
25
(
2–3
), pp.
259
284
. 10.1080/01638539809545028
68.
Rosario
,
B.
,
2000
,
Latent Semantic Indexing: An Overview
,
University of California
,
Berkeley
, pp.
1
16
.
69.
Günther
,
F.
,
Dudschig
,
C.
, and
Kaup
,
B.
,
2015
, “
LSAfun—An R Package for Computations Based on Latent Semantic Analysis
,”
Behav. Res. Methods
,
47
(
4
), pp.
930
944
. 10.3758/s13428-014-0529-0
70.
Dumais
,
S. T.
,
2004
, “
Latent Semantic Analysis
,”
Annu. Rev. Inf. Sci. Technol.
,
38
(
1
), pp.
188
230
. 10.1002/aris.1440380105
71.
Vester
,
K. L.
,
2005
,
Information Retrieval in Document Spaces Using Clustering
,
Technical University of Denmark
,
Kongens Lyngby, Denmark
.
72.
Wei
,
C.-P.
,
Yang
,
C. C.
, and
Lin
,
C.-M.
,
2008
, “
A Latent Semantic Indexing-Based Approach to Multilingual Document Clustering
,”
Decis. Support Syst.
,
45
(
3
), pp.
606
620
. 10.1016/j.dss.2007.07.008
73.
Kartsaklis
,
D.
,
Sadrzadeh
,
M.
, and
Pulman
,
S.
,
2013
, “
Separating Disambiguation From Composition in Distributional Semantics
,”
The Seventeenth Conference on Computational Natural Language Learning
,
Sofia, Bulgaria
,
Aug. 8–9
, pp.
114
123
.
74.
Park
,
H.
,
Kwon
,
K.
,
Khiati
,
A.-i. Z.
,
Lee
,
J.
, and
Chung
,
I.-J.
,
2015
, “
Agglomerative Hierarchical Clustering for Information Retrieval Using Latent Semantic Index
,”
IEEE International Conference on Smart City/SocialCom/SustainCom
,
Chengdu, China
,
Dec. 19–21
, pp.
426
431
.
75.
Kuo
,
V.
,
2019
, “
Latent Semantic Analysis for Knowledge Management in Construction
,” Ph.D. thesis,
Department of Civil Engineering, Aalto University
.
76.
Ward Jr
,
J. H.
,
1963
, “
Hierarchical Grouping to Optimize an Objective Function
,”
J. Am. Stat. Assoc.
,
58
(
301
), pp.
236
244
. 10.1080/01621459.1963.10500845
77.
Johnson
,
S. C.
,
1967
, “
Hierarchical Clustering Schemes
,”
Psychometrika
,
32
(
3
), pp.
241
254
. 10.1007/BF02289588
78.
Day
,
W. H. E.
, and
Edelsbrunner
,
H.
,
1984
, “
Efficient Algorithms for Agglomerative Hierarchical Clustering Methods
,”
J. Classif.
,
1
(
1
), pp.
7
24
. 10.1007/BF01890115
79.
Sokal
,
R. R.
, and
Michener
,
C. D.
,
1958
, “
A Statistical Method for Evaluating Systematic Relationships
,”
Univ. Kans. Sci. Bull.
,
38
(
22
), pp.
1409
1438
.
80.
Desgraupes
,
B.
,
2013
,
Clustering Indices
,
University of Paris Ouest—Lab Modal'X
, pp.
1
34
.
81.
Roux
,
M.
,
2018
, “
A Comparative Study of Divisive and Agglomerative Hierarchical Clustering Algorithms
,”
J. Classif.
,
35
(
2
), pp.
345
366
. 10.1007/s00357-018-9259-9
82.
Fu
,
K. K.
,
Yang
,
M. C.
, and
Wood
,
K. L.
,
2016
, “
Design Principles: Literature Review, Analysis, and Future Directions
,”
ASME J. Mech. Des.
,
138
(
10
), p.
101103
. 10.1115/1.4034105
83.
Ferrer
,
I.
,
Rios
,
J.
, and
Ciurana
,
J.
,
2009
, “
An Approach to Integrate Manufacturing Process Information in Part Design Phases
,”
J. Mater. Process. Technol.
,
209
(
4
), pp.
2085
2091
. 10.1016/j.jmatprotec.2008.05.009
84.
MacDuffie
,
J. P.
,
Sethuraman
,
K.
, and
Fisher
,
M. L.
,
1996
, “
Product Variety and Manufacturing Performance: Evidence From the International Automotive Assembly Plant Study
,”
Manage. Sci.
,
42
(
3
), pp.
350
369
. 10.1287/mnsc.42.3.350
85.
Norden
,
P. V.
,
1964
, “
Manpower Utilization Patterns in Research and Development Projects
,” Ph.D. dissertation,
Columbia University
.
86.
ElMaraghy
,
W.
,
ElMaraghy
,
H.
,
Tomiyama
,
T.
, and
Monostori
,
L.
,
2012
, “
Complexity in Engineering Design and Manufacturing
,”
CIRP Ann.
,
61
(
2
), pp.
793
814
. 10.1016/j.cirp.2012.05.001
87.
Chryssolouris
,
G.
,
Efthymiou
,
K.
,
Papakostas
,
N.
,
Mourtzis
,
D.
, and
Pagoropoulos
,
A.
,
2013
, “
Flexibility and Complexity: Is It a Trade-off?
,”
Int. J. Prod. Res.
,
51
(
23–24
), pp.
6788
6802
. 10.1080/00207543.2012.761362
88.
Ahn
,
J. S.
, and
Crawford
,
R. H.
,
1994
, “
Complexity Analysis of Computational Engineering Design Processes
,”
The 1994 ASME Design Technical Conferences
,
Minneapolis, MN
,
Sept. 11–14
, pp.
205
220
.
89.
Suh
,
N. P.
,
2005
, “
Complexity in Engineering
,”
CIRP Ann.
,
54
(
2
), pp.
46
63
. 10.1016/S0007-8506(07)60019-5
90.
Suh
,
N. P.
,
2005
,
Complexity: Theory and Applications
,
Oxford University Press
,
New York
.
You do not currently have access to this content.