Abstract

Additive manufacturing (AM) offers many advantages to make objects compared to traditional subtractive manufacturing methods. For example, complex geometries can be easily fabricated, and lightweight parts can be formed while maintaining the parts strength for the low carbon footprint, low material consumption and waste. But there are some areas for AM to improve in sustainability, reliability, productivity, robustness, material diversity, and part quality. Life-cycle assessment studies have identified that the AM printing stage has a big impact on the life-cycle sustainability of 3D printed products. AM building parameters can be properly selected to improve the sustainability of AM. This paper explores the fused deposition modeling (FDM) process parameters for sustainability to reduce the process energy and material consumption. Investigated parameters include the printing layer height, number of shells, material infilling percentage, infilling type, and building orientation. Taguchi design of experiments approach and statistical analysis tools are used to find optimal parameter settings to improve the sustainability of the FDM process. Models formulated in this research can be easily extended to other AM processes.

References

1.
Peng
,
T.
, and
Sun
,
W.
,
2017
, “
Energy Modelling for FDM 3D Printing From a Life Cycle Perspective
,”
Int. J. Manuf. Res.
,
12
(
1
), pp.
83
98
. 10.1504/IJMR.2017.083651
2.
Jackson
,
M. A.
,
Van Asten
,
A.
,
Morrow
,
J. D.
,
Min
,
S.
, and
Pfefferkorn
,
F. E.
,
2016
, “
A Comparison of Energy Consumption in Wire-Based and Powder-Based Additive-Subtractive Manufacturing
,”
Procedia Manuf.
,
5
, pp.
989
1005
. 10.1016/j.promfg.2016.08.087
3.
Faludi
,
J.
,
Bayley
,
C.
,
Bhogal
,
S.
, and
Iribarne
,
M.
,
2015
, “
Comparing Environmental Impacts of Additive Manufacturing vs Traditional Machining via Life-Cycle Assessment
,”
Rapid Prototyp. J.
,
21
(
1
), pp.
14
33
. 10.1108/RPJ-07-2013-0067
4.
Wu
,
W.
,
Ye
,
W.
,
Wu
,
Z.
,
Geng
,
P.
,
Wang
,
Y.
, and
Zhao
,
J.
,
2017
, “
Influence of Layer Thickness, Raster Angle, Deformation Temperature and Recovery Temperature on the Shape-Memory Effect of 3D-Printed Polylactic Acid Samples
,”
Materials (Basel)
,
10
(
8
), p.
970
. 10.3390/ma10080970
5.
Nabipour
,
M.
, and
Akhoundi
,
B.
,
2020
, “
An Experimental Study of FDM Parameters Effects on Tensile Strength, Density, and Production Time of ABS/Cu Composites
,”
J. Elastomers Plast.
10.1177/0095244320916838
6.
Elkaseer
,
A.
,
Schneider
,
S.
, and
Scholz
,
S. G.
,
2020
, “
Experiment-Based Process Modeling and Optimization for High-Quality and Resource-Efficient FFF 3D Printing
,”
Appl. Sci.
,
10
(
8
), p.
2899
. 10.3390/app10082899
7.
Griffiths
,
C. A.
,
Howarth
,
J.
,
De Almeida-Rowbotham
,
G.
,
Rees
,
A.
, and
Kerton
,
R.
,
2016
, “
A Design of Experiments Approach for the Optimisation of Energy and Waste During the Production of Parts Manufactured by 3D Printing
,”
J. Cleaner Prod.
,
139
, pp.
74
85
. 10.1016/j.jclepro.2016.07.182
8.
Dev
,
S.
, and
Srivastava
,
R.
,
2019
, “
Experimental Investigation and Optimization of FDM Process Parameters for Material and Mechanical Strength
,”
Mater. Today Proc.
,
26
(
Part 2
), pp.
1995
1999
. 10.1016/j.matpr.2020.02.435
9.
Griffiths
,
C.
,
Howarth
,
J.
,
Almeida-Rowbotham
,
G.
, and
Rees
,
A.
,
2016
, “
A Design of Experiments Approach to Optimise Tensile and Notched Bending Properties of Fused Deposition Modelling Parts
,”
Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf.
,
230
(
8
), pp.
1502
1512
. 10.1177/0954405416640182
10.
Nguyen
,
V. H.
,
Huynh
,
T. N.
,
Nguyen
,
T. P.
, and
Tran
,
T. T.
,
2020
, “
Single and Multi-Objective Optimisation of Processing Parameters for Fused Deposition Modelling in 3D Printing Technology
,”
Int. J. Automot. Mech. Eng.
,
17
(
1
), pp.
7542
7551
. 10.15282/ijame.17.1.2020.03.0558
11.
Camposeco-Negrete
,
C.
,
2020
, “
Optimization of Printing Parameters in Fused Deposition Modeling for Improving Part Quality and Process Sustainability
,”
Int. J. Adv. Manuf. Technol.
,
108
(
7–8
), pp.
2131
2147
. 10.1007/s00170-020-05555-9
12.
International Energy Agency
,
2018
, “
Key World Energy Statistics 2018
,”
International Energy Agency
. 10.1787/key_energ_stat-2018-en
13.
Gebler
,
M.
,
Schoot Uiterkamp
,
A. J. M.
, and
Visser
,
C.
,
2014
, “
A Global Sustainability Perspective on 3D Printing Technologies
,”
Energy Policy
,
74
(
C
), pp.
158
167
. 10.1016/j.enpol.2014.08.033
14.
Suárez
,
L.
, and
Domínguez
,
M.
,
2020
, “
Sustainability and Environmental Impact of Fused Deposition Modelling (FDM) Technologies
,”
Int. J. Adv. Manuf. Technol.
,
106
(
3–4
), pp.
1267
1279
. 10.1007/s00170-019-04676-0
15.
Ribeiro
,
I.
,
Matos
,
F.
,
Jacinto
,
C.
,
Salman
,
H.
,
Cardeal
,
G.
,
Carvalho
,
H.
,
Godina
,
R.
, and
Peças
,
P.
,
2020
, “
Framework for Life Cycle Sustainability Assessment of Additive Manufacturing
,”
Sustainability
,
12
(
3
), p.
929
. 10.3390/su12030929
16.
Luo
,
Y.
,
Ji
,
Z.
,
Leu
,
M. C.
, and
Caudill
,
R.
,
1999
, “
Environmental Performance Analysis of Solid Freeform Fabrication Processes
,”
Proceedings of the 1999 IEEE International Symposium on Electronics and the Environment
,
Danvers, MA
,
May 13
http://dx.doi.org/10.1109/ISEE.1999.765837.
17.
Mani
,
M.
,
Lyons
,
K. W.
, and
Gupta
,
S. K.
,
2014
, “
Sustainability Characterization for Additive Manufacturing
,”
J. Res. Natl. Inst. Stand. Technol.
,
119
, pp.
419
428
. 10.6028/jres.119.016
18.
Nagarajan
,
H. P. N.
, and
Haapala
,
K. R.
,
2017
, “
Environmental Performance Evaluation of Direct Metal Laser Sintering Through Exergy Analysis
,”
Procedia Manuf.
,
10
, pp.
957
967
. 10.1016/j.promfg.2017.07.087
19.
Despeisse
,
M.
,
Yang
,
M.
,
Evans
,
S.
,
Ford
,
S.
, and
Minshall
,
T.
,
2017
, “
Sustainable Value Roadmapping Framework for Additive Manufacturing
,”
Procedia CIRP
,
61
, pp.
594
599
. 10.1016/j.procir.2016.11.186
20.
Liu
,
Z. Y.
,
Li
,
C.
,
Fang
,
X. Y.
, and
Guo
,
Y. B.
,
2018
, “
Energy Consumption in Additive Manufacturing of Metal Parts
,”
Procedia Manuf.
,
26
, pp.
834
845
. 10.1016/j.promfg.2018.07.104
21.
Simon
,
T. R.
,
Lee
,
W. J.
,
Spurgeon
,
B. E.
,
Boor
,
B. E.
, and
Zhao
,
F.
,
2018
, “
An Experimental Study on the Energy Consumption and Emission Profile of Fused Deposition Modeling Process
,”
Procedia Manuf.
,
26
, pp.
920
928
. 10.1016/j.promfg.2018.07.119
22.
Jiang
,
J.
,
Xu
,
X.
, and
Stringer
,
J.
,
2019
, “
Optimization of Process Planning for Reducing Material Waste in Extrusion Based Additive Manufacturing
,”
Rob. Comput. Integr. Manuf.
,
59
, pp.
317
325
. 1016/j.rcim.2019.05.007
23.
Liu
,
Z.
,
Jiang
,
Q.
,
Ning
,
F.
,
Kim
,
H.
,
Cong
,
W.
,
Xu
,
C.
, and
Zhang
,
H. C.
,
2018
, “
Investigation of Energy Requirements and Environmental Performance for Additive Manufacturing Processes
,”
Sustainability
,
10
(
10
), p.
3606
. 10.3390/su10103606
24.
Yang
,
Y.
,
Li
,
L.
,
Pan
,
Y.
, and
Sun
,
Z.
,
2017
, “
Energy Consumption Modeling of Stereolithography-Based Additive Manufacturing Toward Environmental Sustainability
,”
J. Ind. Ecol.
,
21
, pp.
S168
S178
. 10.1111/jiec.12589
25.
Panda
,
B. N.
,
Garg
,
A.
, and
Shankhwar
,
K.
,
2016
, “
Empirical Investigation of Environmental Characteristic of 3-D Additive Manufacturing Process Based on Slice Thickness and Part Orientation
,”
Measurement
,
86
, pp.
293
300
. 10.1016/j.measurement.2016.03.006
26.
Clymer
,
D. R.
,
Cagan
,
J.
, and
Beuth
,
J.
,
2017
, “
Power-Velocity Process Design Charts for Powder Bed Additive Manufacturing
,”
ASME J. Mech. Des.
,
139
(
10
), p.
100907
. 10.1115/1.4037302
27.
Paul
,
R.
, and
Anand
,
S.
,
2012
, “
Process Energy Analysis and Optimization in Selective Laser Sintering
,”
Trans. North Am. Manuf. Res. Inst. SME
,
40
(
4
), pp.
728
737
. 10.1016/j.jmsy.2012.07.004
28.
Dey
,
A.
, and
Yodo
,
N.
,
2019
, “
A Systematic Survey of FDM Process Parameter Optimization and Their Influence on Part Characteristics
,”
J. Manuf. Mater. Process.
,
3
(
3
), p.
64
. 10.3390/jmmp3030064
29.
Davis
,
R.
, and
John
,
P.
,
2018
, “
Application of Taguchi-Based Design of Experiments for Industrial Chemical Processes
,”
Statistical Approaches With Emphasis on Design of Experiments Applied to Chemical Processes
. 10.5772/intechopen.69501
30.
Lin
,
T.
, and
Chananda
,
B.
,
2003
, “
Quality Improvement of an Injection-Molded Product Using Design of Experiments: A Case Study
,”
Qual. Eng.
,
16
(
1
), pp.
99
104
. 10.1081/QEN-120020776
31.
Meisel
,
N.
, and
Williams
,
C.
,
2015
, “
An Investigation of Key Design for Additive Manufacturing Constraints in Multimaterial Three-Dimensional Printing
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111406
. 10.1115/1.4030991
32.
Tumova
,
O.
,
Kupka
,
L.
, and
Netolicky
,
P.
,
2018
, “
Design of Experiments Approach and Its Application in the Evaluation of Experiments
,”
2018 International Conference on Diagnostics in Electrical Engineering (Diagnostika)
,
Pilsen, Czech
,
Sept. 4–7
.
33.
Telford
,
J. K.
,
2007
, “
A Brief Introduction to Design of Experiments
,”
Johns Hopkins APL Tech. Dig.
(Applied Phys. Lab.)
,
27
(
3
), pp.
224
232
, https://www.jhuapl.edu/Content/techdigest/pdf/V27-N03/27-03-Telford.pdf
You do not currently have access to this content.