Abstract

Gerotor machines are internal gear hydraulic devices that present numerous performance benefits with respect to other topologies. For this reason, they find their application in high-efficiency mechatronic devices, such as electro-hydrostatic actuators. When designing gerotor machines either as a motor or pump, there are numerous parameters to choose, with different influences on the mechanical and volumetric efficiency behavior. Some of these aspects have been addressed in previous research works, while other important features like the tooth aspect ratio have been partially or completely neglected. Hence, it is the goal of this paper to present a methodology, as linear and generic as possible, to tackle the design of gerotor units. The proposed design method is numerically validated through a case study, where dedicated computational fluid dynamics models are used to assess the performance of the prototype.

References

1.
Liu
,
H.
, and
Lee
,
J.
,
2016
, “
Development of Combined Trochoidal Profile of a Gerotor Pump
,”
J. Appl. Math. Phys.
,
4
(
1
), pp.
28
32
. 10.4236/jamp.2016.41005
2.
Belloli
,
D.
,
Previdi
,
F.
,
Savaresi
,
S. M.
,
Cologni
,
A.
, and
Zappella
,
M.
,
2010
, “
Modeling and Identification of an Electro-Hydrostatic Actuator
,”
5th IFAC Symposium on Mechatronic Systems
,
Cambridge, MA
,
September
, Vol.
43
, pp.
620
625
.
3.
Galluzzi
,
R.
,
Amati
,
N.
, and
Tonoli
,
A.
,
2015
, “
Modeling and Characterization of Rotary Electrohydrostatic Actuators
,”
ASME J. Vib. Acoust.
,
138
(
1
), p.
011016
. 10.1115/1.4031756
4.
Colbourne
,
J. R.
,
1975
, “
Gear Shape and Theoretical Flow Rate in Internal Gear Pumps
,”
Trans. Can. Soc. Mech. Eng.
,
3
(
4
), pp.
215
223
. 10.1139/tcsme-1975-0029
5.
Beard
,
J. E.
,
Hall
,
A. S.
, and
Soedel
,
W.
,
1991
, “
Comparison of Hypotrochoidal and Epitrochoidal Gerotors
,”
ASME J. Mech. Des.
,
113
(
2
), pp.
133
141
. 10.1115/1.2912761
6.
Beard
,
J. E.
,
Yannitell
,
D. W.
, and
Pennock
,
G. R.
,
1992
, “
The Effects of the Generating Pin Size and Placement on the Curvature and Displacement of Epitrochoidal Gerotors
,”
Mech. Mach. Theory
,
27
(
4
), pp.
373
389
. 10.1016/0094-114X(92)90030-L
7.
Shung
,
J. B.
, and
Pennock
,
G. R.
,
1994
, “
Geometry for Trochoidal-Type Machines With Conjugate Envelopes
,”
Mech. Mach. Theory
,
29
(
1
), pp.
25
42
. 10.1016/0094-114X(94)90017-5
8.
Mimmi
,
G.
, and
Pennacchi
,
P.
,
1997
, “
Rotor Design and Optimization in Internal Lobe Pumps
,”
Appl. Mech. Rev.
,
50
(
11
), pp.
133
141
. 10.1115/1.3101825
9.
Fabiani
,
M.
,
Mancò
,
S.
,
Nervegna
,
N.
, and
Rundo
,
M.
,
1999
, “
Modelling and Simulation of Gerotor Gearing in Lubricating Oil Pumps
,”
SAE International Congress and Exposition Detroit
,
Michigan
,
No. 1999-01-0626
.
10.
Vecchiato
,
D.
,
Demenego
,
A.
,
Argyris
,
J.
, and
Litvin
,
F. L.
,
2001
, “
Geometry of a Cycloidal Pump
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
18–19
), pp.
2309
2330
. 10.1016/S0045-7825(00)00236-X
11.
Demenego
,
A.
,
Vecchiato
,
D.
,
Litvin
,
F. L.
,
Nervegna
,
N.
, and
Mancò
,
S.
,
2002
, “
Design and Simulation of Meshing of a Cycloidal Pump
,”
Mech. Mach. Theory
,
37
(
3
), pp.
311
332
. 10.1016/S0094-114X(01)00074-X
12.
Kim
,
J. H.
,
Kim
,
C.
, and
Chang
,
Y. J.
,
2006
, “
Optimum Design on Lobe Shapes of Gerotor Oil Pump
,”
J. Mech. Sci. Technol.
,
20
(
9
), pp.
1390
1398
. 10.1007/BF02915962
13.
Hsieh
,
C. F.
, and
Hwang
,
Y. W.
,
2007
, “
Geometric Design for a Gerotor Pump With High Area Efficiency
,”
ASME J. Mech. Des.
,
129
(
12
), pp.
1269
1277
. 10.1115/1.2779887
14.
Hsieh
,
C. F.
, and
Yan
,
H. S.
,
2008
, “
Feasible Design Region and Sealing Property of Hypotrochoidal Gerotor Geometry
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
222
(
9
), pp.
1847
1854
. 10.1243/09544062JMES774
15.
Hsieh
,
C. F.
,
2010
, “
Non-Undercutting Region and Property Evaluation of Epitrochoidal Gerotor Geometry
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
224
(
2
), pp.
473
481
. 10.1243/09544062JMES1694
16.
Hsieh
,
C. F.
,
2009
, “
Influence of Gerotor Performance in Varied Geometrical Design Parameters
,”
ASME J. Mech. Des.
,
131
(
12
), p.
121008
. 10.1115/1.4000484
17.
Tong
,
S. H.
,
Yan
,
J.
, and
Yang
,
D. C. H.
,
2009
, “
Design of Deviation-Function Based Gerotors
,”
Mech. Mach. Theory
,
44
(
8
), pp.
1595
1606
. 10.1016/j.mechmachtheory.2009.01.001
18.
Yan
,
J.
,
Yang
,
D. C. H.
, and
Tong
,
S. H.
,
2009
, “
A New Gerotor Design Methods With Switch Angle Assignability
,”
ASME J. Mech. Des.
,
131
(
1
), p.
011006
. 10.1115/1.3013442
19.
Choi
,
T. H.
,
Kim
,
M. S.
,
Lee
,
G. S.
,
Jung
,
S. Y.
,
Bae
,
J. H.
, and
Kim
,
C.
,
2012
, “
Design of Rotor for Internal Gear Pump Using Cycloid and Circular-Arc Curves
,”
ASME J. Mech. Des.
,
134
(
1
), p.
011005
. 10.1115/1.4004423
20.
Hsieh
,
C. F.
,
2015
, “
Flow Characteristics of Gerotor Pumps With Novel Variable Clearance Designs
,”
J. Fluid Eng.
,
137
(
4
), p.
041107
. 10.1115/1.4029274
21.
Liu
,
H.
,
Lee
,
J.
,
Yoon
,
A.
, and
Kim
,
S.
,
2015
, “
Profile Design and Numerical Calculation of Instantaneous Flow Rate of a Gerotor Pump
,”
J. Appl. Math. Phys.
,
3
(
1
), pp.
92
97
. 10.4236/jamp.2015.31013
22.
Gamez-Montero
,
P. J.
,
Castilla
,
R.
, and
Codina
,
E.
,
2018
, “
Methodology Based on Best Practice Rules to Design a New-Born Trochoidal Gear Pump
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
232
(
6
), pp.
1057
1068
. 10.1177/0954406217697355
23.
Gamez-Montero
,
P. J.
,
Garcia-Vilchez
,
M.
,
Rausch
,
G.
,
Freire
,
J.
, and
Codina
,
E.
,
2012
, “
Teeth Clearance and Relief Grooves Effects in a Trochoidal-Gear Pump Using New Modules of Gerolab
,”
ASME J. Mech. Des.
,
134
(
5
), p.
054502
. 10.1115/1.4006440
24.
Altare
,
G.
, and
Rundo
,
M.
,
2016
, “
Computational Fluid Dynamics Analysis of Gerotor Lubricating Pumps at High-Speed: Geometric Features Influencing the Filling Capability
,”
J. Fluid Eng.
,
138
(
11
), p.
111101
. 10.1115/1.4033675
25.
Jacazio
,
G.
, and
Martin
,
A. D.
,
2016
, “
Influence of Rotor Profile Geometry on the Performance of an Original Low-Pressure Gerotor Pump
,”
Mech. Mach. Theory
,
100
(
1
), pp.
296
312
. 10.1016/j.mechmachtheory.2016.02.012
26.
Martin
,
A. D.
,
Jacazio
,
G.
, and
Sorli
,
M.
,
2019
, “
Optimization of Gerotor Pumps With Asymmetric Profiles Through an Evolutionary Strategy Algorithm
,”
Machines
,
7
(
1
), pp.
1
23
. 10.3390/machines7010017
27.
Kwon
,
S.
,
Kim
,
M.
, and
Shin
,
J.
,
2008
, “
Analytical Wear Model of a Gerotor Pump Without Hydrodynamic Effect
,”
J. Adv. Mech. Des. Syst. Manuf.
,
2
(
2
), pp.
230
237
. 10.1299/jamdsm.2.230
28.
O’Shea
,
C.
,
Xia
,
Y.
, and
Lowry
,
S.
,
2013
, “
Analysis and Optimization of an Electrohydraulic Power Pack for Use in a Fully-Active Vehicle Suspension Through the Use of Computational Fluid Dynamics
,”
ASME/BATH 2013 Symposium on Fluid Power & Motion Control (FPMC2013)
,
Sarasota, FL
,
October
, p.
V001T01A002
.
29.
Galluzzi
,
R.
,
Xu
,
Y.
,
Amati
,
N.
, and
Tonoli
,
A.
,
2018
, “
Optimized Design and Characterization of Motor-Pump Unit for Energy-Regenerative Shock Absorbers
,”
Appl. Energy
,
210
(
1
), pp.
16
27
. 10.1016/j.apenergy.2017.10.100
30.
Pellegri
,
M.
, and
Vacca
,
A.
,
2016
, “
Numerical Simulation of Gerotor Pumps Considering Rotor Micro-Motions
,”
Meccanica
,
52
(
8
), pp.
1851
1870
. 10.1007/s11012-016-0536-6
31.
Pellegri
,
M.
,
Vacca
,
A.
,
Frosina
,
E.
,
Buono
,
D.
, and
Senatore
,
A.
,
2016
, “
Numerical Analysis and Experimental Validation of Gerotor Pumps: A Comparison Between a Lumped Parameter and a Computational Fluid Dynamics-Based Approach
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
231
(
23
), pp.
4413
4430
. 10.1177/0954406216666874
32.
Buono
,
D.
,
di Cola
,
F. S.
,
Senatore
,
A.
,
Frosina
,
E.
,
Buccilli
,
G.
, and
Harrison
,
J.
,
2016
, “
Modelling Approach on a Gerotor Pump Working in Cavitation Conditions
,”
Energy Procedia
,
101
(
2016
), pp.
701
709
. 10.1016/j.egypro.2016.11.089
33.
Hsieh
,
C. F.
,
2012
, “
Fluid and Dynamics Analyses of a Gerotor Pump Using Various Span Angle Designs
,”
ASME J. Mech. Des.
,
134
(
12
), p.
121003
. 10.1115/1.4007703
34.
Ivanović
,
L.
, and
Josifović
,
D.
,
2006
, “
Specific Sliding of Trochoidal Gearing Profile in the Gerotor Pumps
,”
FME Trans.
,
34
(
3
), pp.
121
127
.
35.
Nichols Portland
,
2005
, “
Gerotor Selection and Pump Design
,”
Portland, ME
.
36.
Carconi
,
G.
,
D’Arcano
,
C.
,
Nervegna
,
N.
, and
Rundo
,
M.
,
2012
, “
Geometric Features of Gerotor Pumps: Analytic vs Cad Methods
,”
ASME/BATH 2012 Symposium on Fluid Power & Motion Control (FPMC2012)
,
Bath, UK
,
September
, pp.
59
78
.
37.
COMSOL 5.4
,
2018
,
CFD Module User’s Guide
,
COMSOL Inc.
,
Stockholm
.
38.
Ding
,
H.
,
Visser
,
F. C.
,
Jiang
,
Y.
, and
Furmanczyk
,
M.
,
2011
, “
Demonstration and Validation of a 3D CFD Simulation Tool Predicting Pump Performance and Cavitation for Industrial Applications
,”
J. Fluid Eng.
,
133
(
1
), p.
011101
. 10.1115/1.4003196
You do not currently have access to this content.