Abstract

Constant-force mechanisms (CFMs) can produce an almost invariant output force over a limited range of input displacement. Without using additional sensor and force controller, adjustable CFMs can passively produce an adjustable constant output force to interact with the working environment. In the literature, one-dimensional CFMs have been developed for various applications. This paper presents the design of a novel CFM that can produce adjustable constant force in two dimensions. Because an adjustable constant force can be produced in each radial direction, the proposed adjustable CFM can be used in applications that require two-dimensional force regulation. In this paper, the design formulation and simulation results are presented and discussed. Equations to minimize the output force variation are given to choose the design parameters optimally. A prototype of the two-dimensional CFM is tested to demonstrate the effectiveness and accuracy of adjustable force regulation. This novel CFM is expected to be used in machines or robots to interact friendly with the environment.

References

1.
Wu
,
Y.-S.
, and
Lan
,
C.-C.
,
2014
, “
Linear Variable-Stiffness Mechanisms Based on Preloaded Curved Beams
,”
ASME J. Mech. Des.
,
136
(
12
), p.
122302
. 10.1115/1.4028705
2.
Wu
,
T.-H.
, and
Lan
,
C.-C.
,
2016
, “
A Wide-Range Variable Stiffness Mechanism for Semi-Active Vibration Systems
,”
J. Sound Vib.
,
363
, pp.
18
32
. 10.1016/j.jsv.2015.10.024
3.
Delissen
,
A.
,
Radaelli
,
G.
,
Shaw
,
L. A.
,
Hopkins
,
J. B.
, and
Herde
,
J. L.
,
2018
, “
Design of an Isotropic Metamaterial With Constant Stiffness and Zero Poisson’s Ratio Over Large Deformations
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111405
. 10.1115/1.4041170
4.
Gao
,
F.
,
Liu
,
Y.
, and
Liao
,
W.-H.
,
2018
, “
Design of Powered Ankle-Foot Prosthesis With Nonlinear Parallel Spring Mechanism
,”
ASME J. Mech. Des.
,
140
(
5
), p.
055001
. 10.1115/1.4039385
5.
Qiu
,
D.
,
Seguy
,
S.
, and
Paredes
,
M.
,
2018
, “
Tuned Nonlinear Energy Sink With Conical Spring: Design Theory and Sensitivity Analysis
,”
ASME J. Mech. Des.
,
140
(
1
), p.
011404
. 10.1115/1.4038304
6.
Lambert
,
P.
, and
Herder
,
J. L.
,
2017
, “An Adjustable Constant Force Mechanism Using Pin Joints and Springs,”
New Trends in Mechanism and Machine Science
,
Springer
,
Cham
, pp.
453
461
.
7.
Chen
,
Y.-H.
, and
Lan
,
C.-C.
,
2012
, “
An Adjustable Constant-Force Mechanism for Adaptive End-Effector Operations
,”
ASME J. Mech. Des.
,
134
(
3
), p.
031005
. 10.1115/1.4005865
8.
Wang
,
J.-Y.
, and
Lan
,
C.-C.
,
2014
, “
A Constant-Force Compliant Gripper for Handling Objects of Various Sizes
,”
ASME J. Mech. Des.
,
136
(
7
), p.
071008
. 10.1115/1.4027285
9.
Liu
,
Y.
,
Zhang
,
Y.
, and
Xu
,
Q.
,
2017
, “
Design and Control of a Novel Compliant Constant-Force Gripper Based on Buckled Fixed-Guided Beams
,”
IEEE/ASME Trans. Mechatron.
,
22
(
1
), pp.
476
486
. 10.1109/TMECH.2016.2614966
10.
Wang
,
P.
, and
Xu
,
Q.
,
2017
, “
Design and Testing of a Flexure-Based Constant-Force Stage for Biological Cell Micromanipulation
,”
IEEE Trans. Autom. Sci. Eng.
,
15
(
3
), pp.
1114
1126
. 10.1109/TASE.2017.2733553
11.
Chen
,
C.-C.
, and
Lan
,
C.-C.
,
2017
, “
An Accurate Force Regulation Mechanism for High-Speed Handling of Fragile Objects Using Pneumatic Grippers
,”
IEEE Trans. Autom. Sci. Eng.
,
15
(
4
), pp.
1600
1608
.
12.
Lan
,
C.-C.
,
Wang
,
J.-H.
, and
Chen
,
Y.-H.
,
2010
, “
A Compliant Constant-Force Mechanism for Adaptive Robot End-Effector Operations
,”,
2010 IEEE International Conference on Robotics and Automation (ICRA)
.,
Anchorage, AK
,
May 3–8
, pp.
2131
2136
.
13.
Yang
,
Z.-W.
, and
Lan
,
C.-C.
,
2015
, “
An Adjustable Gravity-Balancing Mechanism Using Planar Extension and Compression Springs
,”
Mech. Mach. Theory
,
92
, pp.
314
329
. 10.1016/j.mechmachtheory.2015.05.006
14.
Chen
,
Y.-H.
, and
Lan
,
C.-C.
,
2012
, “
Design of a Constant-Force Snap-Fit Mechanism for Minimal Mating Uncertainty
,”
Mech. Mach. Theory
,
55
, pp.
34
50
. 10.1016/j.mechmachtheory.2012.04.006
15.
Lan
,
C.-C.
,
Yang
,
S.-A.
, and
Wu
,
Y.-S.
,
2014
, “
Design and Experiment of a Compact Quasi-Zero-Stiffness Isolator Capable of a Wide Range of Loads
,”
J. Sound Vib.
,
333
(
20
), pp.
4843
4858
. 10.1016/j.jsv.2014.05.009
16.
Spaggiari
,
A.
, and
Dragoni
,
E.
,
2017
, “
Analytical Modelling of Rolamite Mechanism Made of Shape-Memory Alloy for Constant Force Actuators
,”
J. Intell. Mater. Syst. Struct.
,
28
(
16
), pp.
2208
2221
. 10.1177/1045389X16667560
17.
Berselli
,
G.
,
Mammano
,
G. S.
, and
Dragoni
,
E.
,
2014
, “
Design of a Dielectric Elastomer Cylindrical Actuator With Quasi-Constant Available Thrust: Modeling Procedure and Experimental Validation
,”
ASME J. Mech. Des.
,
136
(
12
), p.
125001
. 10.1115/1.4028277
18.
Scirè Mammano
,
G.
, and
Dragoni
,
E.
,
2014
, “
Elastic Compensation of Linear Shape Memory Alloy Actuators Using Compliant Mechanisms
,”
J. Intell. Mater. Syst. Struct.
,
25
(
9
), pp.
1124
1138
. 10.1177/1045389X13488253
19.
Wang
,
P.
, and
Xu
,
Q.
,
2018
, “
Design and Modeling of Constant-Force Mechanisms: A Survey
,”
Mech. Mach. Theory
,
119
, pp.
1
21
. 10.1016/j.mechmachtheory.2017.08.017
20.
López-Martínez
,
J.
,
García-Vallejo
,
D.
,
Arrabal-Campos
,
F. M.
, and
Garcia-Manrique
,
J. M.
,
2018
, “
Design of Three New Cam-Based Constant-Force Mechanisms
,”
ASME J. Mech. Des.
,
140
(
8
), p.
082302
. 10.1115/1.4040174
21.
Liu
,
Y.
,
Yu
,
D.-p.
, and
Yao
,
J.
,
2016
, “
Design of an Adjustable Cam Based Constant Force Mechanism
,”
Mech. Mach. Theory
,
103
, pp.
85
97
. 10.1016/j.mechmachtheory.2016.04.014
22.
Scirè Mammano
,
G.
, and
Dragoni
,
E.
,
2017
, “
Mechanical Design of Buckled Beams for Low-Stiffness Elastic Suspensions: Theory and Application
,”
Proc. Inst. Mech. Eng. Part L
,
231
(
1–2
), pp.
140
150
. 10.1177/1464420716670930
23.
Hou
,
C.-W.
, and
Lan
,
C.-C.
,
2013
, “
Functional Joint Mechanisms With Constant-Torque Outputs
,”
Mech. Mach. Theory
,
62
, pp.
166
181
. 10.1016/j.mechmachtheory.2012.12.002
24.
Wang
,
P.
,
Yang
,
S.
, and
Xu
,
Q.
,
2018
, “
Design and Optimization of a New Compliant Rotary Positioning Stage With Constant Output Torque
,”
Int. J. Precis. Eng. Manuf.
,
19
(
12
), pp.
1843
1850
. 10.1007/s12541-018-0213-x
25.
Gandhi
,
I.
, and
Zhou
,
H.
,
2019
, “
Synthesizing Constant Torque Compliant Mechanisms Using Precompressed Beams
,”
ASME J. Mech. Des.
,
141
(
1
), p.
014501
. 10.1115/1.4041330
26.
Lee
,
S.
,
2005
, “
Development of a New Variable Remote Center Compliance (VRCC) With Modified Elastomer Shear Pad (ESP) for Robot Assembly
,”
IEEE Trans. Autom. Sci. Eng.
,
2
(
2
), pp.
193
197
. 10.1109/TASE.2005.844437
27.
Wang
,
P.
, and
Xu
,
Q.
,
2017
, “
Design of a Flexure-Based Constant-Force XY Precision Positioning Stage
,”
Mech. Mach. Theory
,
108
, pp.
1
13
. 10.1016/j.mechmachtheory.2016.10.007
28.
Zhang
,
X.
, and
Xu
,
Q.
,
2018
, “
Design and Testing of a [Q7]Novel 2-DOF Compound Constant-Force Parallel Gripper
,”
Precis. Eng.
,
56
, pp.
53
61
.
29.
Zhang
,
X.
, and
Xu
,
Q.
,
2019
, “
Design and Analysis of a 2-DOF Compliant Gripper With Constant-Force Flexure Mechanism
,”
J. Micro-Bio Robot.
,
15
(
1
), pp.
31
42
.
30.
Kuo
,
Y. L.
,
Huang
,
S. Y.
, and
Lan
,
C. C.
,
2019
, “
Sensorless Force Control of Automated Grinding/Deburring Using an Adjustable Force Regulation Mechanism
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, Canada
,
May 20–24
,
IEEE
, pp.
9489
9495
.
31.
Lan
,
C.-C.
, and
Cheng
,
Y.-J.
,
2008
, “
Distributed Shape Optimization of Compliant Mechanisms Using Intrinsic Functions
,”
ASME J. Mech. Des.
,
130
(
7
), p.
072304
. 10.1115/1.2890117
You do not currently have access to this content.