Abstract

This paper presents the design, fabrication, and testing of a novel single stack-based piezoelectric energy harvester (PEH) for harvesting energy from three-degree-of-freedom (3-DOF) force excitation. One uniqueness lies in that the 3-DOF energy harvesting is implemented by using one piezoelectric stack. To scavenge energy from the 3-DOF input force, the proposed PEH is constructed with several force transmission mechanisms and slider mechanisms. The direction of the input force is first changed by the force transmission mechanisms, and the redundant force components are eliminated by the slider mechanisms. The transmitted force is then amplified by a two-stage force amplifier mechanism to improve the electric power output. The key parameters were found by establishing an analytical model of the proposed PEH. The best output performance of the PEH is achieved by selecting and optimally designing the key parameters. A prototype harvester was fabricated, and several experimental studies were conducted to verify the device performance. Results show the effectiveness of the developed 3-DOF PEH under the input force applied in x-axis, y-axis or z-axis. Furthermore, the issues that affect the practical application are discussed.

References

1.
Beeby
,
S. P.
,
Torah
,
R. N.
,
Tudor
,
M. J.
,
Glynne-Jones
,
P.
,
O’donnell
,
T.
,
Saha
,
C. R.
, and
Roy
,
S.
,
2007
, “
A Micro Electromagnetic Generator for Vibration Energy Harvesting
,”
J. Micromech. Microeng.
,
17
(
7
), p.
1257
. 10.1088/0960-1317/17/7/007
2.
Tao
,
K.
,
Liu
,
S.
,
Sun
,
W. L.
,
Miao
,
J.
, and
Hu
,
X.
,
2014
, “
A Three-Dimensional Electret-Based Micro Power Generator for Low-Level Ambient Vibrational Energy Harvesting
,”
J. Micromech. Microeng.
,
24
(
6
), p.
065022
. 10.1088/0960-1317/24/6/065022
3.
Zhu
,
G.
,
Lin
,
Z.-H.
,
Jing
,
Q.
,
Bai
,
P.
,
Pan
,
C.
,
Yang
,
Y.
,
Zhou
,
Y.
, and
Wang
,
Z. L.
,
2013
, “
Toward Large-Scale Energy Harvesting by a Nanoparticle-Enhanced Triboelectric Nanogenerator
,”
Nano. Lett.
,
13
(
2
), pp.
847
853
. 10.1021/nl4001053
4.
Dhote
,
S.
,
Yang
,
Z.
, and
Zu
,
J.
,
2018
, “
Modeling and Experimental Parametric Study of a Tri-leg Compliant Orthoplanar Spring Based Multi-Mode Piezoelectric Energy Harvester
,”
Mech. Syst. Signal Processing
,
98
, pp.
268
280
. 10.1016/j.ymssp.2017.04.031
5.
Priya
,
S.
,
2007
, “
Advances in Energy Harvesting Using Low Profile Piezoelectric Transducers
,”
J. Electroceram.
,
19
(
1
), pp.
167
184
. 10.1007/s10832-007-9043-4
6.
Chen
,
X.-r.
,
Yang
,
T.-q.
,
Wang
,
W.
, and
Yao
,
X.
,
2012
, “
Vibration Energy Harvesting With a Clamped Piezoelectric Circular Diaphragm
,”
Ceram. Int.
,
38
(
Suppl. 1
), pp.
S271
S274
. 10.1016/j.ceramint.2011.04.099
7.
Diyana
,
N. H.
,
Muthalif
,
A. G. A.
,
Fakhzan
,
M. N.
, and
Nordin
,
A. N.
,
2012
, “
Vibration Energy Harvesting Using Single and Comb-Shaped Piezoelectric Beam Structures: Modeling and Simulation
,”
Procedia. Eng.
,
41
, pp.
1228
1234
. 10.1016/j.proeng.2012.07.305
8.
Castagnetti
,
D.
,
2011
, “
Fractal-Inspired Multifrequency Structures for Piezoelectric Harvesting of Ambient Kinetic Energy
,”
ASME J. Mech. Des.
,
133
(
1
), p.
111005
. 10.1115/1.4004984
9.
Zou
,
H.-X.
,
Zhang
,
W.-M.
,
Li
,
W.-B.
,
Gao
,
Q.-H.
,
Wei
,
K.-X.
,
Peng
,
Z.-K.
, and
Meng
,
G.
,
2017
, “
Design, Modeling and Experimental Investigation of a Magnetically Coupled Flextensional Rotation Energy Harvester
,”
Smart Mater. Struct.
,
26
(
11
), p.
115023
. 10.1088/1361-665X/aa8eb8
10.
Tao
,
J. X.
,
Viet
,
N. V.
,
Carpinteri
,
A.
, and
Wang
,
Q.
,
2017
, “
Energy Harvesting From Wind by a Piezoelectric Harvester
,”
Eng. Struct.
,
133
, pp.
74
80
. 10.1016/j.engstruct.2016.12.021
11.
Shenck
,
N. S.
, and
Paradiso
,
J. A.
,
2001
, “
Energy Scavenging With Shoe-Mounted Piezoelectrics
,”
IEEE Micro
,
21
(
3
), pp.
30
42
. 10.1109/40.928763
12.
Li
,
X.
,
Guo
,
M.
, and
Dong
,
S.
,
2011
, “
A Flex-Compressive-Mode Piezoelectric Transducer for Mechanical Vibration/Strain Energy Harvesting
,”
IEEE Trans. Ultrasonics, Ferroelectrics, Frequency Control
,
58
(
4
), pp.
698
703
. 10.1109/TUFFC.2011.1862
13.
Qian
,
F.
,
Xu
,
T.-B.
, and
Zuo
,
L.
,
2018
, “
Design, Optimization, Modeling and Testing of a Piezoelectric Footwear Energy Harvester
,”
Energy Convers. Manage.
,
171
, pp.
1352
1364
. 10.1016/j.enconman.2018.06.069
14.
Hua
,
R.
,
Liu
,
H.
,
Yang
,
H.
,
Wang
,
Y.
, and
Ferrante
,
J.
,
2018
, “
A Nonlinear Interface Integrated Lever Mechanism for Piezoelectric Footstep Energy Harvesting
,”
Appl. Phys. Lett.
,
113
(
5
), p.
053902
. 10.1063/1.5041259
15.
Nia
,
E. M.
,
Zawawi
,
N. A. W. A.
, and
Singh
,
B. S. M.
,
2017
,
“A Review of Walking Energy Harvesting Using Piezoelectric Materials
” (IOP Conference Series: Materials Science and Engineering),
IOP Publishing
,
Bristol, UK
, Vol.
291
, p.
012026
.
16.
Elahi
,
H.
,
Eugeni
,
M.
, and
Gaudenzi
,
P.
,
2018
, “
A Review on Mechanisms for Piezoelectric-Based Energy Harvesters
,”
Energies
,
11
(
7
), p.
1850
. 10.3390/en11071850
17.
Kang
,
Z.
,
Wang
,
X.
, and
Luo
,
Z.
,
2012
, “
Topology Optimization for Static Shape Control of Piezoelectric Plates With Penalization on Intermediate Actuation Voltage
,”
ASME J. Mech. Des.
,
134
(
5
), p.
051006
. 10.1115/1.4006527
18.
Hu
,
G.
,
Tang
,
L.
,
Das
,
R.
, and
Marzocca
,
P.
,
2018
, “
A Two-Degree-of-Freedom Piezoelectric Energy Harvester With Stoppers for Achieving Enhanced Performance
,”
Int. J. Mech. Sci.
,
149
, pp.
500
507
. 10.1016/j.ijmecsci.2017.07.051
19.
Somkuwar
,
R.
,
Chandwani
,
J.
, and
Deshmukh
,
R.
,
2018
, “
Wideband Auto-Tunable Vibration Energy Harvester Using Change in Centre of Gravity
,”
Microsyst. Technol.
,
24
(
7
), pp.
3033
3044
. 10.1007/s00542-018-3846-x
20.
Yang
,
Z.
, and
Zu
,
J.
,
2016
, “
Toward Harvesting Vibration Energy From Multiple Directions by a Nonlinear Compressive-Mode Piezoelectric Transducer
,”
IEEE/ASME Trans. Mechatronics
,
21
(
3
), pp.
1787
1791
. 10.1109/TMECH.2015.2459014
21.
Kan
,
J.
,
Fu
,
J.
,
Wang
,
S.
,
Zhang
,
Z.
,
Chen
,
S.
, and
Yang
,
C.
,
2017
, “
Study on a Piezo-Disk Energy Harvester Excited by Rotary Magnets
,”
Energy
,
122
, pp.
62
69
. 10.1016/j.energy.2017.01.059
22.
Wen
,
S.
,
Xu
,
Q.
, and
Zi
,
B.
,
2018
, “
Design of a New Piezoelectric Energy Harvester Based on Compound Two-Stage Force Amplification Frame
,”
IEEE Sensors J.
,
18
(
10
), pp.
3989
4000
. 10.1109/JSEN.2018.2820221
23.
Chen
,
W.
,
Wang
,
Y.
, and
Deng
,
W.
,
2017
, “
Deformable Force Amplification Frame Promoting Piezoelectric Stack Energy Harvesting: Parametric Model, Experiments and Energy Analysis
,”
J. Intell. Mater. Syst. Struct.
,
28
(
7
), pp.
827
836
. 10.1177/1045389X16657426
24.
Wang
,
Y.
,
Chen
,
W.
, and
Guzman
,
P.
,
2016
, “
Piezoelectric Stack Energy Harvesting With a Force Amplification Frame: Modeling and Experiment
,”
J. Intell. Mater. Syst. Struct.
,
27
(
17
), pp.
2324
2332
. 10.1177/1045389X16629568
25.
Chen
,
S.
,
Wang
,
L.
,
Zhou
,
W.
,
Musgrave
,
P.
,
Xu
,
T.-B.
, and
Zuo
,
L.
,
2015
, “
Optimal design of force magnification frame of a piezoelectric stack energy harvester
,”
Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2015
,
San Diego, CA
,
Apr. 3
, Vol.
9435
, p.
943516
.
26.
Lee
,
S.
, and
Tovar
,
A.
,
2013
, “
Topology Optimization of Piezoelectric Energy Harvesting Skin Using Hybrid Cellular Automata
,”
ASME J. Mech. Des.
,
135
(
3
), p.
031001
.
27.
Wu
,
Z.
, and
Xu
,
Q.
,
2019
, “
Design and Testing of a Novel Bidirectional Energy Harvester With Single Piezoelectric Stack
,”
Mech. Syst. Signal Processing
,
122
, pp.
139
151
. 10.1016/j.ymssp.2018.12.026
28.
Wu
,
Z.
, and
Xu
,
Q.
,
2019
, “
Design and Optimization of a New 3-DOF Energy Harvester With Single Piezoelectric Stack
,”
Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2019)
,
Hong Kong, China
,
July 8–12
, pp.
424
429
.
29.
Zhao
,
S.
, and
Erturk
,
A.
,
2014
, “
Deterministic and Band-Limited Stochastic Energy Harvesting From Uniaxial Excitation of a Multilayer Piezoelectric Stack
,”
Sens. Actuators, A.
,
214
, pp.
58
65
. 10.1016/j.sna.2014.04.019
You do not currently have access to this content.