Abstract

This paper investigates novel reconfigurable parallel mechanisms with bifurcation between planar subgroup SE(2) and rotation subgroup SO(3) based on a transformation configuration space. Having recollected necessary theoretical fundamentals with regard to compositional submanifolds and kinematic bonds, the motion representation of the platform of reconfigurable parallel mechanisms are investigated. The transformation configuration space of a reconfigurable parallel mechanism with motion branches is proposed with respect to the fact that the intersection of Lie subgroups or submanifolds is the identity element or a non-identity element. The switch conditions of the transformation configuration space are discussed, leading to establishment of a theoretical foundation for realizing a switch of motion branches. The switch principle of reconfigurable parallel mechanisms is further investigated with respect to the common motion between SE(2) parallel-mechanism motion generators and SO(3) parallel-mechanism motion generators. Under this principle, the subchains with common motion generators are synthesized and divided into two types of generators. The first type of generators generates kinematic chains with a common intersection of three joint axes, and the second type of generators generates a common intersection of two joint axes. Following this, two types of reconfigurable parallel mechanisms with three identical subchains are synthesized, resulting in 11 varieties in which platforms can be switched between SE(2) and SO(3) after passing through the singularity configuration space.

References

1.
Dai
,
J. S.
, and
Gogu
,
G.
,
2016
, “
Special Issue on Reconfigurable Mechanisms: Morphing, Metamorphosis and Reconfiguration Through Constraint Variations and Reconfigurable Joints
,”
Mech. Mach. Theory
,
96
, pp.
213
214
. 10.1016/j.mechmachtheory.2015.11.006
2.
Prabakaran
,
V.
,
Elara
,
M. R.
,
Pathmakumar
,
T.
, and
Nansai
,
S.
,
2018
, “
Floor Cleaning Robot With Reconfigurable Mechanism
,”
Autom. Constr.
,
91
, pp.
155
165
. 10.1016/j.autcon.2018.03.015
3.
Viegas
,
C.
,
Tavakoli
,
M.
, and
Almeida
,
A. T. D.
,
2017
, “
A Novel Grid-Based Reconfigurable Spatial Parallel Mechanism With Large Workspace
,”
Mech. Mach. Theory
,
115
, pp.
149
167
. 10.1016/j.mechmachtheory.2017.05.008
4.
Moubarak
,
P.
, and
Ben-Tzvi
,
P.
,
2012
, “
Modular and Reconfigurable Mobile Robotics
,”
Rob. Autom. Syst.
,
60
(
12
), pp.
1648
1663
. 10.1016/j.robot.2012.09.002
5.
Matheou
,
M.
,
Phocas
,
M. C.
,
Christoforou
,
E. G.
, and
Müller
,
A.
,
2018
, “
On the Kinetics of Reconfigurable Hybrid Structures
,”
J. Build. Eng.
,
17
, pp.
32
42
. 10.1016/j.jobe.2018.01.013
6.
Wohlhart
,
K.
,
1996
, “Kinematotropic Linkages,”
Recent Advances in Robot Kinematics
,
J.
Lenarčič
, and
V.
Parenti-Castelli
, eds.,
Springer
,
Dordrecht, Netherlands
, pp.
359
368
.
7.
Galletti
,
C.
, and
Fanghella
,
P.
,
2001
, “
Single-Loop Kinematotropic Mechanisms
,”
Mech. Mach. Theory
,
36
(
6
), pp.
743
761
. 10.1016/S0094-114X(01)00002-7
8.
Dai
,
J. S.
, and
Rees Jones
,
J.
,
1999
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
375
382
. 10.1115/1.2829470
9.
Gan
,
D.
,
Dai
,
J. S.
, and
Liao
,
Q.
,
2010
, “
Constraint Analysis on Mobility Change of a Novel Metamorphic Parallel Mechanism
,”
Mech. Mach. Theory
,
45
(
12
), pp.
1864
1876
. 10.1016/j.mechmachtheory.2010.08.004
10.
Aimedee
,
F.
,
Gogu
,
G.
,
Dai
,
J. S.
,
Bouzgarrou
,
C.
, and
Bouton
,
N.
,
2016
, “
Systematization of Morphing in Reconfigurable Mechanisms
,”
Mech. Mach. Theory
,
96
, pp.
215
224
. 10.1016/j.mechmachtheory.2015.07.009
11.
Kuo
,
C. H.
,
Dai
,
J. S.
, and
Yan
,
H. S.
,
2009
, “
Reconfiguration Principles and Strategies for Reconfigurable Mechanisms
,”
2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots (ReMAR)
,
London
,
June 22–24
, pp.
1
7
.
12.
Yan
,
H. S.
, and
Kang
,
C. H.
,
2009
, “
Configuration Synthesis of Mechanisms With Variable Topologies
,”
Mech. Mach. Theory
,
44
(
5
), pp.
896
911
. 10.1016/j.mechmachtheory.2008.06.006
13.
Gan
,
D.
, and
Dai
,
J. S.
,
2013
, “
Geometry Constraint and Branch Motion Evolution of 3-PUP Parallel Mechanisms With Bifurcated Motion
,”
Mech. Mach. Theory
,
61
, pp.
168
183
. 10.1016/j.mechmachtheory.2012.09.011
14.
Zhang
,
K.
,
Dai
,
J. S.
, and
Fang
,
Y.
,
2012
, “
Geometric Constraint and Mobility Variation of Two 3SvPSv Metamorphic Parallel Mechanisms
,”
ASME J. Mech. Des.
,
135
(
1
), p.
011001
. 10.1115/1.4007920
15.
Zlatanov
,
D.
,
Bonev
,
I. A.
, and
Gosselin
,
C. M.
,
2002
, “Constraint Singularities as Configuration Space Singularities,”
Advances in Robot Kinematics – Theory and Applications
,
J.
Lenarčič
, and
T.
Thomas
, eds.,
Springer
,
Dordrecht, Netherlands
, pp.
183
192
.
16.
Ma
,
X. S.
,
Zhang
,
K. T.
, and
Dai
,
J. S
,
2018
, “
Novel Spherical-Planar and Bennett-Spherical 6R Metamorphic Linkages with Reconfigurable Motion Branches
,”
Mech. Mach. Theory
,
128
, pp.
628
647
. 10.1016/j.mechmachtheory.2018.05.001
17.
Park
,
F. C.
, and
Kim
,
J. W.
,
1999
, “
Singularity Analysis of Closed Kinematic Chains
,”
ASME J. Mech. Des.
,
121
(
1
), pp.
32
38
. 10.1115/1.2829426
18.
Zhang
,
X.
,
López-Custodio
,
P.
, and
Dai
,
J. S.
,
2018
, “
Compositional Submanifolds of Prismatic-Universal-Prismatic and Skewed Prismatic-Revolute-Prismatic Kinematic Chains and Their Derived Parallel Mechanisms
,”
ASME J. Mech. Rob.
,
10
(
3
), p.
031001
. 10.1115/1.4038218
19.
Qin
,
Y.
,
Dai
,
J. S.
, and
Gogu
,
G.
,
2014
, “
Multi-furcation in a Derivative Queer-Square Mechanism
,”
Mech. Mach. Theory
,
81
, pp.
36
53
. 10.1016/j.mechmachtheory.2014.06.006
20.
Kang
,
X.
,
Zhang
,
X.
, and
Dai
,
J. S.
,
2019
, “
First-and Second-Order Kinematics-Based Constraint System Analysis and Reconfiguration Identification for the Queer-Square Mechanism
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011004
. 10.1115/1.4041486
21.
Gan
,
D.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2016
, “
Unified Kinematics and Optimal Design of a 3rRPS Metamorphic Parallel Mechanism With a Reconfigurable Revolute Joint
,”
Mech. Mach. Theory
,
96
, pp.
239
254
. 10.1016/j.mechmachtheory.2015.08.005
22.
Gan
,
D.
,
Dai
,
J. S.
, and
Liao
,
Q.
,
2009
, “
Mobility Change in Two Types of Metamorphic Parallel Mechanisms
,”
ASME J. Mech. Rob.
,
1
(
4
), p.
041007
. 10.1115/1.3211023
23.
Kang
,
X.
, and
Dai
,
J. S.
,
2019
, “
Relevance and Transferability for Parallel Mechanisms With Reconfigurable Platforms
,”
ASME J. Mech. Rob.
,
11
(
3
), p.
031012
. 10.1115/1.4042629
24.
Zhang
,
K.
, and
Dai
,
J. S.
,
2015
, “
Reconfiguration Analysis of Wren Platform and Iits Kinematic Variants Based on Reciprocal Screw Systems
,”
IFToMM 14th World Congress in Mechanism and Machine Science
,
Taipai, Taiwan
,
Oct. 25–30
, pp.
237
242
.
25.
Zhang
,
K.
, and
Dai
,
J. S.
,
2015
, “
Screw-System-Variation Enabled Reconfiguration of the Bennett Plano-Spherical Hybrid Linkage and Its Evolved Parallel Mechanism
,”
ASME J. Mech. Des.
,
137
(
6
), p.
062303
. 10.1115/1.4030015
26.
Müller
,
A.
,
Zhang
,
K.
, and
Dai
,
J. S.
,
2016
, “Analysis of the Motion Mode Change of a Metamorphic 8R Linkage,”
Advances in Reconfigurable Mechanisms and Robots II
, Vol.
36
,
X. L.
Ding
,
X. W.
Kong
, and
J. S.
Dai
, eds.,
Springer
,
Cham
, pp.
39
47
.
27.
Li
,
Q.
, and
Hérve
,
J. M.
,
2009
, “
Parallel Mechanisms With Bifurcation of Schoenflies Motion
,”
IEEE Trans. Rob.
,
25
(
1
), pp.
158
164
. 10.1109/TRO.2008.2008737
28.
Refaat
,
S.
,
Hervé
,
J. M.
,
Nahavandi
,
S.
, and
Trinh
,
H.
,
2007
, “
Two-Mode Overconstrained Three-DOFs Rotational-Translational Linear-Motor-Based Parallel-Kinematics Mechanism for Machine Tool Applications
,”
Robotica
,
25
(
4
), pp.
461
466
. 10.1017/S0263574706003286
29.
Hervé
,
J. M.
,
1999
, “
The Lie Group of Rigid Body Displacements, a Fundamental Tool for Mechanism Design
,”
Mech. Mach. Theory
,
34
(
5
), pp.
719
730
. 10.1016/S0094-114X(98)00051-2
30.
Dai
,
J. S.
,
2014
,
Screw Algebra and Lie Groups and Lie Algebras
,
Higher Education Press
,
Beijing
.
31.
Dai
,
J. S.
,
2020
,
Screw Algebra and Kinematic Approaches for Mechanisms and Robotics
,
Springer
,
London
.
32.
Kong
,
X.
,
Gosselin
,
C. M.
, and
Richard
,
P.-L.
,
2006
, “
Type Synthesis of Parallel Mechanisms With Multiple Operation Modes
,”
ASME J. Mech. Des.
,
129
(
6
), pp.
595
601
. 10.1115/1.2717228
33.
Kong
,
X.
,
2013
, “
Type Synthesis of 3-DOF Parallel Manipulators With Both Planar and Translational Operation Modes
,”
ASME J. Mech. Rob
,
5
(
4
), p.
041015
. 10.1115/1.4025219
34.
Gogu
,
G.
,
2011
, “
Maximally Regular T2R1-Type Parallel Manipulators With Bifurcated Spatial Motion
,”
ASME J. Mech. Rob.
,
3
(
1
), p.
011010
. 10.1115/1.4003180
35.
Meng
,
J.
,
Liu
,
G.
, and
Li
,
Z.
,
2007
, “
A Geometric Theory for Analysis and Synthesis of Sub-6 DoF Parallel Manipulators
,”
IEEE Trans. Rob.
,
23
(
4
), pp.
625
649
. 10.1109/TRO.2007.898995
36.
Wu
,
Y.
,
Wang
,
H.
, and
Li
,
Z.
,
2011
, “
Quotient Kinematics Machines: Concept, Analysis, and Synthesis
,”
ASME J. Mech. Rob.
,
3
(
4
), p.
041004
. 10.1115/1.4004891
37.
Lee
,
J. M.
,
2012
, “Submanifolds,”
Introduction to Smooth Manifolds
, Vol.
218
,
J. M.
Lee
, ed.,
Springer
,
New York
, pp.
98
124
.
38.
Angeles
,
J.
,
2004
, “
The Qualitative Synthesis of Parallel Manipulators
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
617
624
. 10.1115/1.1667955
39.
Rico
,
J. M.
,
Cervantes-Sánchez
,
J. J.
,
Tadeo-Chávez
,
A.
,
Pérez-Soto
,
G. I.
, and
Rocha-Chavarría
,
J.
,
2008
, “
New Considerations on the Theory of Type Synthesis of Fully Parallel Platforms
,”
ASME J. Mech. Des.
,
130
(
11
), p.
112302
. 10.1115/1.2976447
40.
Huang
,
Z.
, and
Li
,
Q. C.
,
2003
, “
Type Synthesis of Symmetrical Lower-Mobility Parallel Mechanisms Using the Constraint-Synthesis Method
,”
Int. J. Rob. Res.
,
22
(
1
), pp.
59
79
. 10.1177/0278364903022001005
41.
Jin
,
Q.
, and
Yang
,
T. L.
,
2004
, “
Theory for Topology Synthesis of Parallel Manipulators and Its Application to Three-Dimension-Translation Parallel Manipulators
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
625
639
. 10.1115/1.1758253
42.
Galletti
,
C.
, and
Giannotti
,
E.
,
2002
, “
Multiloop Kinematotropic Mechanisms
,”
ASME 2002 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Montreal, Quebec, Canada
,
Sept. 29–Oct. 2
, pp.
455
460
.
43.
Fanghella
,
P.
,
Galletti
,
C.
, and
Giannotti
,
E.
,
2006
, “Parallel Robots that Change Their Group of Motion,”
Advances in Robot Kinematics
,
J.
Lennarčič
, and
B.
Roth
, eds.,
Springer
,
Netherlands
, pp.
49
56
.
44.
Wei
,
J.
, and
Dai
,
J. S.
,
2019
, “
Reconfiguration-Aimed and Manifold-Operation Based Type Synthesis of Metamorphic Parallel Mechanisms with Motion Between 1R2T and 2R1T
,”
Mech. Mach. Theory
,
139
, pp.
66
80
. 10.1016/j.mechmachtheory.2019.04.001
45.
Park
,
F. C.
,
Bobrow
,
J. E.
, and
Ploen
,
S. R.
,
1995
, “
A Lie Group Formulation of Robot Dynamics
,”
Int. J. Rob. Res.
,
14
(
6
), pp.
609
618
. 10.1177/027836499501400606
46.
Löwe
,
H.
,
Wu
,
Y.
, and
Carricato
,
M.
,
2016
, “
Symmetric Subspaces of SE(3)
,”
Adv. Geom.
,
16
(
3
), pp.
381
388
. 10.1515/advgeom-2016-0015
47.
Selig
,
J. M.
,
2004
, “Lie Groups and Lie Algebras in Robotics,”
Computational Noncommutative Algebra and Applications
, Vol.
136
,
J.
Byrnes
, ed.,
Springer
,
Dordrecht, Netherlands
, pp.
101
125
.
48.
Hervé
,
J. M.
,
1978
, “
Analyse Structurelle des Mécanismes par Groupe des Déplacements
,”
Mech. Mach. Theory
,
13
(
4
), pp.
437
450
. 10.1016/0094-114X(78)90017-4
49.
Zefran
,
M.
,
Kumar
,
V.
, and
Croke
,
C. B.
,
1998
, “
On the Generation of Smooth Three-Dimensional Rigid Body Motions
,”
IEEE Trans. Rob. Autom.
,
14
(
4
), pp.
576
589
. 10.1109/70.704225
50.
Chirikjian
,
G. S.
,
2011
,
Stochastic Models, Information Theory, and Lie Groups, Volume 2: Analytic Methods and Modern Applications
,
Springer Science & Business Media
,
Heidelberg, Germany
.
51.
Dai
,
J. S.
,
2014
,
Geometrical Foundations and Screw Algebra for Mechanisms and Robotics
,
Higher Education Press
,
Beijing
.
52.
Dai
,
J. S.
,
2015
, “
Euler–Rodrigues Formula Variations, Quaternion Conjugation and Intrinsic Connections
,”
Mech. Mach. Theory
,
92
, pp.
144
152
. 10.1016/j.mechmachtheory.2015.03.004
53.
Rico Martinez
,
J. M.
, and
Ravani
,
B.
,
2003
, “
On Mobility Analysis of Linkages Using Group Theory
,”
ASME J. Mech. Des.
,
125
(
1
), pp.
70
80
. 10.1115/1.1541628
54.
Hervé
,
J. M.
,
2003
, “
The Planar-Spherical Kinematic Bond: Implementation in Parallel Mechanisms
,” pp.
1
19
. http://www.parallemic.org/Reviews/Review013.html, ParallelMIC, Accessed January 24, 2003.
55.
Selig
,
J. M.
,
2013
,
Geometrical Methods in Robotics
,
Springer Science & Business Media
,
Heidelberg, Germany
.
56.
Dai
,
J. S.
, and
Rees Jones
,
J.
,
2005
, “
Matrix Representation of Topological Configuration Transformation of Metamorphic Mechanisms
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
837
840
. 10.1115/1.1866159
57.
Zhang
,
K.
, and
Dai
,
J. S.
,
2014
, “
A Kirigami-Inspired 8R Linkage and Its Evolved Overconstrained 6R Linkages With the Rotational Symmetry of Order Two
,”
ASME J. Mech. Robot.
,
6
(
2
), p.
021008
. 10.1115/1.4026337
58.
Zhang
,
K.
, and
Dai
,
J. S.
,
2016
, “
Reconfiguration of the Plane-Symmetric Double-Spherical 6R Linkage With Bifurcation and Trifurcation
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
230
(
3
), pp.
473
482
. 10.1177/0954406215584396
59.
Zhang
,
K.
, and
Dai
,
J. S.
,
2016
, “
Geometric Constraints and Motion Branch Variations for Reconfiguration of Single-Loop Linkages With Mobility one
,”
Mech. Mach. Theory
,
106
, pp.
16
29
. 10.1016/j.mechmachtheory.2016.08.006
You do not currently have access to this content.