Abstract

Strong coupling of the physical and control parts within complex dynamic systems should be addressed by integrated design approaches that can manage such interactions. Otherwise, the final solution will be suboptimal or even infeasible. Combined design and control (co-design) methods can tackle this issue by managing the mentioned interactions and can result in superior optimal solutions. Current co-design methods are applicable to simplified non-interconnected systems; however, these methods might be impractical or even impossible to apply to real-world interconnected dynamic systems, hindering designers from obtaining the system-level optimal solutions. This work addresses this issue by developing an optimization algorithm which combines a decomposition-based optimization strategy known as analytical target cascading (ATC) with a co-design-centric formulation of multidisciplinary dynamic system design optimization (MDSDO). Considering the time-dependent linking variables among the dynamic systems’ components, a new consistency measure has also been proposed to manage such quantities in the optimization process. Finally, a plug-in hybrid electric vehicle powertrain, representative of an interconnected dynamic system, has been studied to validate the new algorithm’s results against the conventional all-at-once (AAO) MDSDO. Although the numerical results from the ATC-MDSDO slightly deviate from those in the AAO-MDSDO, this method can play a crucial role as a benchmark when the AAO solution is unattainable or a distributed design paradigm is required.

References

1.
Friedland
,
B.
,
1995
,
Advanced Control System Design
,
Prentice-Hall Inc.
,
Upper Saddle River, NJ
.
2.
Reyer
,
J. A.
,
Fathy
,
H. K.
,
Papalambros
,
P. Y.
, and
Ulsoy
,
A. G.
,
2001
, “
Comparison of Combined Embodiment Design and Control Optimization Strategies Using Optimality Conditions
,”
ASME 2001 Design Engineering Technical Conferences
,
Pittsburgh, PA
,
Sept. 9–12
,
American Society of Mechanical Engineers
,
New York, NY
, pp.
1
10
.
3.
Roos
,
F.
,
2007
, “
Towards a Methodology for Integrated Design of Mechatronic Servo Systems
,”
Ph.D. thesis
,
Royal Institute of Technology
.
4.
Peters
,
D. L.
,
Papalambros
,
P. Y.
, and
Ulsoy
,
A. G.
,
2009
, “
On Measures of Coupling Between the Artifact and Controller Optimal Design Problems
,”
ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
San Diego, CA
,
Aug. 30–Sept. 2
,
American Society of Mechanical Engineers
,
New York, NY
, pp.
1363
1372
.
5.
Fathy
,
H. K.
,
Reyer
,
J. A.
,
Papalambros
,
P. Y.
, and
Ulsov
,
A. G.
,
2001
, “
On the Coupling Between the Plant and Controller Optimization Problems
,”
Proceedings of the 2001 American Control Conference
,
Arlington, VA
,
June 25–27
,
IEEE
, pp.
1864
1869
.
6.
Allison
,
J. T.
,
Guo
,
T.
, and
Han
,
Z.
,
2014
, “
Co-Design of An Active Suspension Using Simultaneous Dynamic Optimization
,”
ASME J. Mech. Des.
,
136
(
8
), p.
081003
. 10.1115/1.4027335
7.
Reyer
,
J. A.
, and
Papalambros
,
P. Y.
,
2002
, “
Combined Optimal Design and Control with Application to An Electric DC Motor
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
183
191
. 10.1115/1.1460904
8.
Fathy
,
H. K.
,
Papalambros
,
P. Y.
,
Ulsoy
,
A. G.
, and
Hrovat
,
D.
,
2003
, “
Nested Plant/Controller Optimization with Application to Combined Passive/Active Automotive Suspensions
,”
Proceedings of the 2003 American Control Conference
,
Denver, CO
,
June 4–6
,
IEEE
, pp.
3375
3380
.
9.
Allison
,
J. T.
, and
Nazari
,
S.
,
2010
, “
Combined Plant and Controller Design Using Decomposition-Based Design Optimization and the Minimum Principle
,”
ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Montreal, Quebec, Canada
,
Aug. 15–18
,
American Society of Mechanical Engineers
,
New York, NY
, pp.
765
774
.
10.
Azad
,
S.
, and
Alexander-Ramos
,
M. J.
,
2018
, “
Robust MDSDO for Co-Design of Stochastic Dynamic Systems
,”
ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Quebec, Canada
,
Aug. 26–29
,
American Society of Mechanical Engineers
,
New York, NY
, p.
V02AT03A002
.
11.
Azad
,
S.
, and
Alexander-Ramos
,
M. J.
,
2020
, “
Robust MDSDO for Co-Design of Stochastic Dynamic Systems
,”
ASME J. Mech. Des.
,
142
(
1
), p.
011403
. 10.1115/1.4044430
12.
Patil
,
R. M.
,
2012
, “
Combined Design and Control Optimization: Application to Optimal PHEV Design and Control for Multiple Objectives
,”
Ph.D. thesis
,
University of Michigan
.
13.
Egardt
,
B.
,
Murgovski
,
N.
,
Pourabdollah
,
M.
, and
Mardh
,
L. J.
,
2014
, “
Electromobility Studies Based on Convex Optimization: Design and Control Issues Regarding Vehicle Electrification
,”
IEEE Control Syst. Mag.
,
34
(
2
), pp.
32
49
. 10.1109/mcs.2013.2295709
14.
Houshmand
,
A.
,
2016
, “
Multidisciplinary Dynamic System Design Optimization of Hybrid Electric Vehicle Powertrains
,”
Master’s thesis
,
University of Cincinnati
.
15.
Azad
,
S.
,
Behtash
,
M.
,
Houshmand
,
A.
, and
Alexander-Ramos
,
M.
,
2017
, “
Comprehensive PHEV Powertrain Co-design Performance Studies Using MDSDO
,”
World Congress of Structural and Multidisciplinary Optimisation
,
Braunschweig, Germany
,
June 5–9
, pp.
83
97
.
16.
Azad
,
S.
,
Behtash
,
M.
,
Houshmand
,
A.
, and
Alexander-Ramos
,
M. J.
,
2019
, “
PHEV Powertrain Co-design With Vehicle Performance Considerations Using MDSDO
,”
Structural Multidiscip. Optim.
,
60
(
3
), pp.
1155
1169
. 10.1007/s00158-019-02264-0
17.
Allison
,
J. T.
, and
Herber
,
D. R.
,
2014
, “
Special Section on Multidisciplinary Design Optimization: Multidisciplinary Design Optimization of Dynamic Engineering Systems
,”
AIAA J.
,
52
(
4
), pp.
691
710
. 10.2514/1.J052182
18.
Liu
,
T.
,
Azarm
,
S.
, and
Chopra
,
N.
,
2017
, “
On Decentralized Optimization for a Class of Multisubsystem Codesign Problems
,”
ASME J. Mech. Des.
,
139
(
12
), p.
121404
. 10.1115/1.4037893
19.
Bayrak
,
A. E.
,
Kang
,
N.
, and
Papalambros
,
P. Y.
,
2016
, “
Decomposition-Based Design Optimization of Hybrid Electric Powertrain Architectures: Simultaneous Configuration and Sizing Design
,”
ASME J. Mech. Des.
,
138
(
7
), p.
071405
. 10.1115/1.4033655
20.
Martins
,
J. R. R. A.
, and
Lambe
,
A. B.
,
2013
, “
Multidisciplinary Design Optimization: A Survey of Architectures
,”
AIAA J.
,
51
(
9
), pp.
2049
2075
. 10.2514/1.J051895
21.
Biegler
,
L. T.
,
2010
,
Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes
,
SIAM
,
Philadelphia, PA
.
22.
Betts
,
J. T.
,
2010
,
Practical Methods for Optimal Control and Estimation Using Nonlinear Programming
,
SIAM
,
Philadelphia, PA
.
23.
Tosserams
,
S.
,
Etman
,
L. F. P.
,
Papalambros
,
P. Y.
, and
Rooda
,
J. E.
,
2006
, “
An Augmented Lagrangian Relaxation for Analytical Target Cascading Using the Alternating Direction Method of Multipliers
,”
Struct. Multidiscip. Optim.
,
31
(
3
), pp.
176
189
. 10.1007/s00158-005-0579-0
24.
Kim
,
H. M.
,
2001
, “
Target Cascading in Optimal System Design
,”
Ph.D. thesis
,
The University of Michigan
.
25.
Kim
,
H. M.
,
Michelena
,
N. F.
,
Papalambros
,
P. Y.
, and
Jiang
,
T.
,
2003
, “
Target Cascading in Optimal System Design
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
474
480
. 10.1115/1.1582501
26.
Alexander
,
M.
, and
Papalambros
,
P.
,
2010
, “
An Accuracy Assessment Method for Two-Dimensional Functional Data in Simulation-Based Design
,”
13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference
,
Fort Worth, TX
,
Sept. 13–15
,
American Institute of Aeronautics and Astronautics
,
Reston, VA
.
27.
Alexander
,
M. J.
,
2011
, “
Management of Functional Data Variables in Decomposition-Based Design Optimization
,”
Ph.D. thesis
,
The University of Michigan
.
28.
Sarin
,
H.
,
Kokkolaras
,
M.
,
Hulbert
,
G.
,
Papalambros
,
P.
,
Barbat
,
S.
, and
Yang
,
R.-J.
,
2008
, “
A Comprehensive Metric for Comparing Time Histories in Validation of Simulation Models with Emphasis on Vehicle Safety Applications
,”
ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Brooklyn, NY
,
Aug. 3–6
,
American Society of Mechanical Engineers
,
New York, NY
, pp.
1275
1286
.
29.
Liu
,
J.
, and
Peng
,
H.
,
2008
, “
Modeling and Control of a Power-split Hybrid Vehicle
,”
IEEE Trans. Control Syst. Technol.
,
16
(
6
), pp.
1242
1251
. 10.1109/TCST.2008.919447
30.
Matthews
,
R. D.
,
Beckel
,
S. A.
,
Shizhi
,
M.
, and
Peters
,
J. E.
,
1983
, “
A New Technique for Thermodynamic Engine Modeling
,”
J. Energy
,
7
(
6
), pp.
667
675
. 10.2514/3.62714
31.
Nam
,
E. K.
, and
Giannelli
,
R.
,
2005
,
Fuel Consumption Modeling of Conventional and Advanced Technology Vehicles in the Physical Emission Rate Estimator (PERE)
.
Technical Report
.
32.
Soong
,
W. L.
,
1993
, “
Design and Modelling of Axially-laminated Interior Permanent Magnet Motor Drives for Field-Weakening Applications
,”
Ph.D. thesis
,
University of Glasgow
.
33.
Van Mierlo
,
J.
,
Van den Bossche
,
P.
, and
Maggetto
,
G.
,
2004
, “
Models of Energy Sources for EV and HEV: Fuel Cells, Batteries, Ultracapacitors, Flywheels and Engine-generators
,”
J. Power. Sources.
,
128
(
1
), pp.
76
89
. 10.1016/j.jpowsour.2003.09.048
34.
Sherbaf Behtash
,
M.
,
2018
, “
A Decomposition-based Multidisciplinary Dynamic System Design Optimization Algorithm for Large-Scale Dynamic System Co-Design
,”
Master’s thesis
,
University of Cincinnati
.
35.
Behtash
,
M.
, and
Alexander-Ramos
,
M. J.
,
2018
, “
Decomposition-Based MDSDO for Co-Design of Large-Scale Dynamic Systems
,”
ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Quebec, Canada
,
Aug. 26–29
,
American Society of Mechanical Engineers
,
New York, NY
, p.
V02AT03A003
.
36.
Patterson
,
M. A.
, and
Rao
,
A. V.
,
2014
, “
GPOPS-II: A MATLAB Software for Solving Multiple-phase Optimal Control Problems Using Hp-Adaptive Gaussian Quadrature Collocation Methods and Sparse Nonlinear Programming
,”
ACM Trans. Math. Software
,
41
(
1
), pp.
1
37
. 10.1145/2558904
37.
Elnagar
,
G.
,
Kazemi
,
M. A.
, and
Razzaghi
,
M.
,
1995
, “
The Pseudospectral Legendre Method for Discretizing Optimal Control Problems
,”
IEEE Trans. Auto. Control
,
40
(
10
), pp.
1793
1796
. 10.1109/9.467672
38.
Wächter
,
A.
, and
Biegler
,
L. T.
,
2006
, “
On the Implementation of An Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming
,”
Math. Programm.
,
106
(
1
), pp.
25
57
. 10.1007/s10107-004-0559-y
39.
Papalambros
,
P. Y.
, and
Wilde
,
D. J.
,
2000
,
Principles of Optimal Design: Modeling and Computation
,
Cambridge University Press
,
New York, NY
.
You do not currently have access to this content.