Abstract

Architecture selection for systems undergoing rapid technological and market change is challenging. It is desirable to select architectures that can provide cost-effective possibilities for future changes and avoid architecture lock-in. However, optimal architectures for prevailing conditions may not be changeable for future adaptation. This tension between objectives for system (product) development for both short-term and long-term competitiveness has been an enduring challenge for system architects. Here, we use time-expanded decision networks (TDNs) with time-varying costs and demands to systematically explore future architecture transition pathways and strategically identify useful designs. We demonstrate a new application for autonomous driving (AD) systems, a nascent technology, where the design and capabilities of constituent components (such as sensors, processors, and data communication links) are still evolving and significant market and regulatory uncertainties persist. In this case, we model technology costs with time-based factors to explicitly include future trends. The results show that as cost differences between architectures increase and demand for new functionality changes with time, the approach is able to identify potential transition points between architecture choices that optimize the net present value (NPV) of the system. For some of the specific scenarios analyzed in this study, the NPV with optimal architecture transitions is at least 10–20% larger as compared with fixed cases. Overall, this work presents a case for planning and partly constructing architecture transition roadmaps for new systems wherein dominant architectures have not emerged.

References

1.
Utterback
,
J.
,
1996
,
Mastering the Dynamics of Innovation
, 2nd ed.,
Harvard Business Review Press
,
Cambridge, MA
.
2.
Henderson
,
R. M.
, and
Clark
,
K. B.
,
1990
, “
Architectural Innovation: The Reconfiguration of Existing Product Technologies and the Failure of Established Firms
,”
Adm. Sci. Q.
,
35
(
1
), pp.
9
30
. 10.2307/2393549
3.
Christensen
,
C.
,
2016
,
The Innovator’s Dilemma: When New Technologies Cause Great Firms to Fail
,
Harvard Business Review Press
,
Cambridge, MA
.
4.
Hill
,
C. W.
, and
Rothaermel
,
F. T.
,
2003
, “
The Performance of Incumbent Firms in the Face of Radical Technological Innovation
,”
Acad. Manag. Rev.
,
28
(
2
), pp.
257
274
. 10.5465/amr.2003.9416161
5.
Ferrati
,
M.
, and
Pallottino
,
L.
,
2013
, “
A Time Expanded Network Based Algorithm for Safe and Efficient Distributed Multi-Agent Coordination
,”
Proc. IEEE Conf. Decis. Control
, pp.
2805
2810
. http://dx.doi.org/10.1109/CDC.2013.6760308
6.
Bérubé
,
J. F.
,
Potvin
,
J. Y.
, and
Vaucher
,
J.
,
2006
, “
Time-Dependent Shortest Paths Through a Fixed Sequence of Nodes: Application to a Travel Planning Problem
,”
Comput. Oper. Res.
,
33
(
6
), pp.
1838
1856
. 10.1016/j.cor.2004.11.021
7.
Silver
,
M. R.
, and
de Weck
,
O. L.
,
2006
, “
Time-Expanded Decision Network: A New Framework for Designing Evolvable Complex Systems
,”
AIAA 2006-6964
,
Sept.
, pp.
1
15
.
8.
Davison
,
P.
,
Cameron
,
B.
, and
Crawley
,
E. F.
,
2014
, “
Technology Portfolio Planning by Weighted Graph Analysis of System Architectures
,”
Syst. Eng.
,
18
(
1
), pp.
45
58
. 10.1002/sys.21287
9.
de Weck
,
O. L.
,
Roos
,
D.
, and
Magee
,
C. L.
,
2011
,
Engineering Systems: Meeting Human Needs in a Complex Technological World
,
The MIT Press
,
Cambridge, MA
.
10.
Crawley
,
E.
,
Cameron
,
B.
, and
Selva
,
D.
,
2016
,
System Architecture: Strategy and Product Development for Complex Systems
,
Pearson Higher Education
,
Hoboken, NJ
.
11.
de Neufville
,
R.
, and
Scholtes
,
S.
,
2011
,
Flexibility in Engineering Design
,
MIT Press
,
Cambridge, MA
.
12.
Ashby
,
W. R.
,
1991
, “Requisite Variety and Its Implications for the Control of Complex Systems,”
Facets of Systems Science
, ed.,
Springer
,
Boston
, pp.
405
417
.
13.
Buede
,
D. M.
, and
Miller
,
W. D.
,
2016
,
The Engineering Design of Systems: Models and Methods
,
John Wiley & Sons
,
New York
.
14.
Blanchard
,
B. S.
, and
Fabrycky
,
W. J.
,
1990
,
Systems Engineering and Analysis
, 4th ed.,
Prentice Hall
,
Englewood Cliffs, NJ
.
15.
Papalambros
,
P. Y.
, and
Wilde
,
D. J.
,
2017
,
Principles of Optimal Design: Modeling and Computation
, 3rd ed.,
Cambridge University Press
,
Cambridge, UK
.
16.
Sobieszczanski-Sobieski
,
J.
,
1995
, “Multidisciplinary Design Optimization: An Emerging New Engineering Discipline,”
Advances in Structural Optimization
,
Springer
,
New York
, pp.
483
496
.
17.
Simpson
,
T.
,
Toropov
,
V.
,
Balabanov
,
V.
, and
Viana
,
F.
,
2008
, “
Design and Analysis of Computer Experiments in Multidisciplinary Design Optimization: A Review of How Far we Have Come-or Not
,”
12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
,
Victoria, British Columbia, Canada
,
Sept. 10–12
, p.
5802
.
18.
Collin
,
A.
,
Siddiqi
,
A.
,
Imanishi
,
Y.
,
Rebentisch
,
E.
,
Tanimichi
,
T.
, and
de Weck
,
O. L.
,
2020
, “
Autonomous Driving Systems Hardware and Software Architecture Exploration: Optimizing Latency and Cost Under Safety Constraints
,”
Syst. Eng.
,
23
(
3
), pp.
327
337
. 10.1002/sys.21528
19.
Ross
,
A. M.
,
Hastings
,
D. E.
,
Warmkessel
,
J. M.
, and
Diller
,
N. P.
,
2004
, “
Multi-Attribute Tradespace Exploration as Front End for Effective Space System Design
,”
J. Spacecr. Rockets
,
41
(
1
), pp.
20
28
. 10.2514/1.9204
20.
Ross
,
A. M.
,
Rhodes
,
D. H.
, and
Hastings
,
D. E.
,
2008
, “
Defining Changeability: Reconciling Flexibility, Adaptability, Scalability, Modifiability, and Robustness for Maintaining System Lifecycle Value
,”
Syst. Eng.
,
11
(
3
), pp.
246
262
. 10.1002/sys.20098
21.
Roberts
,
C. J.
,
Richards
,
M. G.
,
Ross
,
A. M.
,
Rhodes
,
D. H.
, and
Hastings
,
D. E.
,
2009
, “
Scenario Planning in Dynamic Multi-Attribute Tradespace Exploration
,”
3rd Annual IEEE Systems Conference
,
Vancouver, British Columbia, Canada
,
Mar. 23–26
, pp.
366
371
.
22.
Suh
,
E. S.
,
De Weck
,
O. L.
, and
Chang
,
D.
,
2007
, “
Flexible Product Platforms: Framework and Case Study
,”
Res. Eng. Des.
,
18
(
2
), pp.
67
89
. 10.1007/s00163-007-0032-z
23.
Siddiqi
,
A.
,
2010
, “System Reconfigurability,”
Encyclopedia of Aerospace Engineering
,
R.
Blockley
, and
W.
Shyy
, eds.,
John Wiley and Sons
,
New York
.
24.
Siddiqi
,
A.
, and
De Weck
,
O.
,
2006
, “
Self-Similar Modular Architectures for Reconfigurable Space Systems
,”
AIAA 57th International Astronautical Congress, IAC 2006
,
Valencia, Spain
,
Oct. 2–6
, Vol.
10
. https://doi.org/10.2514/6.IAC-06-D1.4.03
25.
Cardin
,
M.-A.
, and
Hu
,
J.
,
2016
, “
Analyzing the Tradeoffs Between Economies of Scale, Time-Value of Money, and Flexibility in Design Under Uncertainty: Study of Centralized Versus Decentralized Waste-to-Energy Systems
,”
ASME J. Mech. Des.
,
138
(
1
), p.
011401
. 10.1115/1.4031422
26.
Fletcher
,
S. M.
,
Miotti
,
M.
,
Swaminathan
,
J.
,
Klemun
,
M. M.
,
Strzepek
,
K.
, and
Siddiqi
,
A.
,
2017
, “
Water Supply Infrastructure Planning : Decision-Making Framework to Classify Multiple Uncertainties and Evaluate Flexible Design
,”
J. Water Resour. Plan. Manag.
,
143
(
10
), pp.
1
9
. 10.1061/(ASCE)WR.1943-5452.0000823
27.
Haubelt
,
C.
,
Richter
,
K.
, and
Ernst
,
R.
,
2002
, “
System Design for Flexibility
,”
Design, Automation and Test in Europe (DATE ‘02)
,
Paris, France
,
Mar. 4-8
, pp.
854
861
.
28.
Simpson
,
T. W.
,
Siddique
,
Z.
, and
Jiao
,
J. R.
,
2006
, “
Platform-Based Product Family Development-Introduction and Overview
,”
Product Platform and Product Family Design: Methods and Applications
,
Springer Science + Business Media, LLC
,
New York
, pp.
1
15
.
29.
Nuffort
,
M. R.
,
2001
,
Managing Subsystem Commonality
,
Massachusetts Institute of Technology
,
Cambridge, MA
30.
Bador
,
D. P.
,
Seering
,
W. J.
, and
Rebentisch
,
E. S.
,
2007
, “
Measuring the Efficiency of Commonality Implementation: Application to Commercial Aircraft Cockpits
,”
International Conference on Engineering Design, ICED’07
,
Paris, France
,
July 28–31
.
31.
De Weck
,
O. L.
,
2006
, “Determining Product Platform Extent,”
Product Platform and Product Family Design
,
T.
Simpson
,
Z.
Siddique
, and
J.
Jiao
, eds.,
Springer Science + Business Media, LLC
,
New York
.
32.
Gonzalez-Zugasti
,
J. P.
,
Otto
,
K. N.
, and
Baker
,
J. D.
,
2000
, “
A Method for Architecting Product Platforms
,”
Res. Eng. Des.
,
12
(
2
), pp.
61
72
. 10.1007/s001630050024
33.
Raiffa
,
H.
,
1970
,
Decision Analysis: Introductory Lectures on Choices Under Uncertainty
, 2nd ed.,
Addison-Wesley Publishing Company
,
Reading, MA
.
34.
Newman
,
M.
,
2010
,
Networks: An Introduction
,
Oxford University Press
,
Oxford, UK
.
35.
Jarvis
,
J. J.
, and
Ratliff
,
H. D.
,
1982
, “
Some Equivalent Objectives for Dynamic Network Flow Problems
,”
Manage. Sci.
,
28
(
1
), pp.
106
109
. 10.1287/mnsc.28.1.106
36.
Nagy
,
B.
,
Farmer
,
J. D.
,
Bui
,
Q. M.
, and
Trancik
,
J. E.
,
2013
, “
Statistical Basis for Predicting Technological Progress
,”
PLoS One
,
8
(
2
), pp.
1
7
. 10.1371/annotation/cb55d096-61f8-46de-b58f-81a872be6dd3
37.
Imanishi
,
Y.
,
Collin
,
A.
,
Siddiqi
,
A.
,
Rebentisch
,
E.
,
Tanimichi
,
T.
, and
Matta
,
Y.
,
2019
, “
Optimization-Based Robust Architecture Design for Autonomous Driving System
,”
SAE Technical Paper Series
, Vol.
1
.
38.
Collin
,
A.
,
Siddiqi
,
A.
,
Imanishi
,
Y.
,
Matta
,
Y.
,
Tanimichi
,
T.
, and
De Weck
,
O.
,
2020
, “
A Multiobjective Systems Architecture Model for Sensor Selection in Autonomous Vehicle Navigation
,”
Complex Systems Design & Management-CSDM 2019
, Vol.
1
, pp.
141
152
.
39.
GAO
,
2016
, “Vehicle Cybersecurity: DOT and Industry Have Efforts Under Way, but DOT Needs to Define Its Role in Responding to a Real–world Attack”, United States Government Accountability Office (GAO), Report GAO-16-350, https://www.gao.gov/products/GAO-16-350.
40.
Ragan
,
D.
,
Sandborn
,
P.
, and
Stoaks
,
P.
,
2002
, “
A Detailed Cost Model for Concurrent Use With Hardware/Software Co-Design
,”
Proc.—Des. Autom. Conf.
, pp.
269
274
. https://doi.org/10.1145/513918.513989
41.
Debardelaben
,
J. A.
,
Madisetti
,
V. K.
, and
Gadient
,
A. J.
,
1997
, “
Incorporating Cost Modeling in Embedded-System Design
,”
IEEE Des. Test Comput.
,
14
(
3
), pp.
24
44
. 10.1109/54.605989
42.
Boehm
,
B.
,
Clark
,
B.
,
Horowitz
,
E.
,
Westland
,
C.
,
Madachy
,
R.
, and
Selby
,
R.
,
1995
, “
Cost Models for Future Software Life Cycle Processes: COCOMO 2.0
,”
Ann. Softw. Eng.
,
1
(
1
), pp.
57
94
. 10.1007/BF02249046
43.
STSC
,
2010
,
Software Development Cost Estimating Guidebook
,
Software Technology Support Center Cost Analysis Group
.
44.
McKinsey & Company
, “
The Future of the North American Automotive Supplier Industry: Evolution of Component Costs, Penetration, and Value Creation Potential Through 2020
,”
2012
.
45.
USCarSales
,” Statistica.com. https://www.statista.com/statistics/199974/us-car-sales-since-1951/, Accessed Feb. 29, 2020.
46.
NetworkX
,”
2019
, Version 2.4 Release Date: October 16, 2019. https://pypi.org/project/networkx/, Accessed February, 2020.
You do not currently have access to this content.