To reduce the computational cost, surrogate models have been widely used to replace expensive simulations in design under uncertainty. However, most existing methods may introduce significant errors when the training data is limited. This paper presents a confidence-driven design optimization (CDDO) framework to manage surrogate model uncertainty for probabilistic design optimization. In this study, a confidence-based Gaussian process (GP) modeling technique is developed to handle the surrogate model uncertainty in system performance predictions by taking both the prediction mean and variance into account. With a target confidence level, the confidence-based GP models are used to reduce the probability of underestimating the probability of failure in reliability assessment. In addition, a new sensitivity analysis method is proposed to approximate the sensitivity of the reliability at the target confidence level with respect to design variables, and thus facilitate the CDDO framework. Three case studies are introduced to demonstrate the effectiveness of the proposed approach.

References

1.
Du
,
X.
, and
Huang
,
B.
,
2007
, “
Reliability‐Based Design Optimization With Equality Constraints
,”
Int. J. Numer. Methods Eng.
,
72
(
11
), pp.
1314
1331
.
2.
Du
,
X.
,
2012
, “
Reliability‐Based Design Optimization With Dependent Interval Variables
,”
Int. J. Numer. Methods Eng.
,
91
(
2
), pp.
218
228
.
3.
Zaman
,
K.
, and
Mahadevan
,
S.
,
2017
, “
Reliability-Based Design Optimization of Multidisciplinary System Under Aleatory and Epistemic Uncertainty
,”
Struct. Multidiscip. Optim.
,
55
(
2
), pp.
681
699
.
4.
Moon
,
M.-Y.
,
Choi
,
K.
,
Cho
,
H.
,
Gaul
,
N.
,
Lamb
,
D.
, and
Gorsich
,
D.
,
2017
, “
Reliability-Based Design Optimization Using Confidence-Based Model Validation for Insufficient Experimental Data
,”
J. Mech. Des.
,
139
(
3
), p.
031404
.
5.
Hao
,
P.
,
Wang
,
Y.
,
Liu
,
X.
,
Wang
,
B.
,
Li
,
G.
, and
Wang
,
L.
,
2017
, “
An Efficient Adaptive-Loop Method for Non-Probabilistic Reliability-Based Design Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
324
, pp.
689
711
.
6.
Lim
,
J.
,
Lee
,
B.
, and
Lee
,
I.
,
2016
, “
Post Optimization for Accurate and Efficient Reliability‐Based Design Optimization Using Second‐Order Reliability Method Based on Importance Sampling and Its Stochastic Sensitivity Analysis
,”
Int. J. Numer. Methods Eng.
,
107
(
2
), pp.
93
108
.
7.
Lee
,
I.
,
Choi
,
K.
,
Du
,
L.
, and
Gorsich
,
D.
,
2008
, “
Inverse Analysis Method Using MPP-Based Dimension Reduction for Reliability-Based Design Optimization of Nonlinear and Multi-Dimensional Systems
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
1
), pp.
14
27
.
8.
Agarwal
,
H.
, and
Renaud
,
J. E.
,
2006
, “
New Decoupled Framework for Reliability-Based Design Optimization
,”
AIAA Journal
,
44
(
7
), pp.
1524
1531
.
9.
Zou
,
T.
, and
Mahadevan
,
S.
,
2006
, “
A Direct Decoupling Approach for Efficient Reliability-Based Design Optimization
,”
Struct. Multidiscip. Optim.
,
31
(
3
), pp.
190
200
.
10.
Jeong
,
S.-B.
, and
Park
,
G.-J.
,
2017
, “
Single Loop Single Vector Approach Using the Conjugate Gradient in Reliability Based Design Optimization
,”
Struct. Multidiscip. Optim.
,
55
(
4
), pp.
1329
1344
.
11.
Jiang
,
C.
,
Qiu
,
H.
,
Gao
,
L.
,
Cai
,
X.
, and
Li
,
P.
,
2017
, “
An Adaptive Hybrid Single-Loop Method for Reliability-Based Design Optimization Using Iterative Control Strategy
,”
Struct. Multidiscip. Optim.
,
56
(6), pp. 1271–1286.
12.
Chakraborty
,
S.
, and
Chowdhury
,
R.
,
2015
, “
A Semi-Analytical Framework for Structural Reliability Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
289
, pp.
475
497
.
13.
Keshtegar
,
B.
,
2016
, “
Chaotic Conjugate Stability Transformation Method for Structural Reliability Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
310
, pp.
866
885
.
14.
Du
,
X.
,
2008
, “
Unified Uncertainty Analysis by the First Order Reliability Method
,”
J. Mechanical Design
,
130
(
9
), p.
091401
.
15.
Low
,
B.
, and
Tang
,
W. H.
,
2007
, “
Efficient Spreadsheet Algorithm for First-Order Reliability Method
,”
J. Engineering Mechanics
,
133
(
12
), pp.
1378
1387
.
16.
Lim
,
J.
,
Lee
,
B.
, and
Lee
,
I.
,
2014
, “
Second‐Order Reliability Method‐Based Inverse Reliability Analysis Using Hessian Update for Accurate and Efficient Reliability‐Based Design Optimization
,”
Int. J. Numer. Methods Eng.
,
100
(
10
), pp.
773
792
.
17.
Hu
,
Z.
, and
Mahadevan
,
S.
,
2017
, “
A Surrogate Modeling Approach for Reliability Analysis of a Multidisciplinary System With Spatio-Temporal Output
,”
Struct. Multidiscip. Optim.
,
56
(
3
), pp.
553
569
.
18.
Ding
,
M.
,
Zhang
,
J.
, and
S.-h
,
L. I.
,
2004
, “
A Sequential Monte-Carlo Simulation Based Reliability Evaluation Model for Distribution Network
,”
Power Syst. Technol.
,
3
(
9
), 39–42.
19.
Hurtado
,
J. E.
, and
Alvarez
,
D. A.
,
2001
, “
Neural-Network-Based Reliability Analysis: A Comparative Study
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
1–2
), pp.
113
132
.
20.
Gomes
,
H. M.
, and
Awruch
,
A. M.
,
2004
, “
Comparison of Response Surface and Neural Network With Other Methods for Structural Reliability Analysis
,”
Struct. Safety
,
26
(
1
), pp.
49
67
.
21.
Wang
,
G. G.
, and
Shan
,
S.
,
2007
, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
,
129
(
4
), pp.
370
380
.
22.
Zhuang
,
X.
, and
Pan
,
R.
,
2012
, “
A Sequential Sampling Strategy to Improve Reliability-Based Design Optimization With Implicit Constraint Functions
,”
ASME J. Mech. Des.
,
134
(
2
), p.
021002
.
23.
Yang
,
X.
,
Liu
,
Y.
, and
Gao
,
Y.
,
2016
, “
Unified Reliability Analysis by Active Learning Kriging Model Combining With Random‐Set Based Monte Carlo Simulation Method
,”
Int. J. Numer. Methods Eng.
,
108
(
11
), pp.
1343
1361
.
24.
Chojaczyk
,
A.
,
Teixeira
,
A.
,
Neves
,
L. C.
,
Cardoso
,
J.
, and
Soares
,
C. G.
,
2015
, “
Review and Application of Artificial Neural Networks Models in Reliability Analysis of Steel Structures
,”
Struct. Saf.
,
52
(Part A), pp.
78
89
.
25.
Gomes
,
W. J D S.
, and
Beck
,
A. T.
,
2013
, “
Global Structural Optimization Considering Expected Consequences of Failure and Using ANN Surrogates
,”
Comput. Struct.
,
126
(
Suppl. C
), pp.
56
68
.
26.
Schueremans
,
L.
, and
Van Gemert
,
D.
,
2005
, “
Benefit of Splines and Neural Networks in Simulation Based Structural Reliability Analysis
,”
Struct. Saf.
,
27
(
3
), pp.
246
261
.
27.
Tandjiria
,
V.
,
Teh
,
C. I.
, and
Low
,
B. K.
,
2000
, “
Reliability Analysis of Laterally Loaded Piles Using Response Surface Methods
,”
Struct. Saf.
,
22
(
4
), pp.
335
355
.
28.
Faravelli
,
L.
,
1989
, “
Response-Surface Approach for Reliability Analysis
,”
J. Eng. Mech.
,
115
(
12
), pp.
2763
2781
.
29.
Deng
,
J.
,
2006
, “
Structural Reliability Analysis for Implicit Performance Function Using Radial Basis Function Network
,”
Int. J. Solids Struct.
,
43
(
11–12
), pp.
3255
3291
.
30.
Dubourg
,
V.
,
Sudret
,
B.
, and
Bourinet
,
J.-M.
,
2011
, “
Reliability-Based Design Optimization Using Kriging Surrogates and Subset Simulation
,”
Struct. Multidiscip. Optim.
,
44
(
5
), pp.
673
690
.
31.
Chen
,
Z.
,
Peng
,
S.
,
Li
,
X.
,
Qiu
,
H.
,
Xiong
,
H.
,
Gao
,
L.
, and
Li
,
P.
,
2015
, “
An Important Boundary Sampling Method for Reliability-Based Design Optimization Using Kriging Model
,”
Struct. Multidiscip. Optim.
,
52
(
1
), pp.
55
70
.
32.
Li
,
G.
,
Meng
,
Z.
,
Hao
,
P.
, and
Hu
,
H.
,
2016
, “
A Hybrid Reliability-Based Design Optimization Approach With Adaptive Chaos Control Using Kriging Model
,”
Int. J. Comput. Methods
,
13
(
1
), p.
1650006
.
33.
Moustapha
,
M.
,
Sudret
,
B.
,
Bourinet
,
J.-M.
, and
Guillaume
,
B.
,
2016
, “
Quantile-Based Optimization Under Uncertainties Using Adaptive Kriging Surrogate Models
,”
Struct. Multidiscip. Optim.
,
54
(
6
), pp.
1403
1421
.
34.
Li
,
F.
,
Luo
,
Z.
,
Rong
,
J.
, and
Zhang
,
N.
,
2013
, “
Interval Multi-Objective Optimisation of Structures Using Adaptive Kriging Approximations
,”
Comput. Struct.
,
119
, pp.
68
84
.
35.
Pan
,
F.
,
Zhu
,
P.
,
Chen
,
W.
, and
Li
,
C-Z.
,
2013
,
Application of Conservative Surrogate to Reliability Based Vehicle Design for Crashworthiness
,
J. Shanghai Jiaotong University (Science)
, Shanghai, China, pp.
1
7
.
36.
Picheny
,
V.
,
2009
, “
Improving Accuracy and Compensating for Uncertainty in Surrogate Modeling
,”
Ph.D. thesis
,
University Florida
, Gainesville, FL.http://etd.fcla.edu/UF/UFE0041248/picheny_v.pdf
37.
Acar
,
E.
,
Haftka
,
R. T.
, and
Johnson
,
T. F.
,
2007
, “
Tradeoff of Uncertainty Reduction Mechanisms for Reducing Structural Weight
,”
ASME J. Mech. Des.
,
129
(
3
), pp.
266
274
.
38.
Basudhar
,
A.
, and
Missoum
,
S.
,
2008
, “
Adaptive Explicit Decision Functions for Probabilistic Design and Optimization Using Support Vector Machines
,”
Comput. Struct.
,
86
(
19–20
), pp.
1904
1917
.
39.
Lee
,
T. H.
, and
Jung
,
J. J.
,
2008
, “
A Sampling Technique Enhancing Accuracy and Efficiency of Metamodel-Based RBDO: Constraint Boundary Sampling
,”
Comput. Struct.
,
86
(
13–14
), pp.
1463
1476
.
40.
Wang
,
Z.
, and
Wang
,
P.
,
2014
, “
A Maximum Confidence Enhancement Based Sequential Sampling Scheme for Simulation-Based Design
,”
ASME J. Mech. Des.
,
136
(
2
), p.
021006
.
41.
Zhao
,
L.
,
Choi
,
K. K.
,
Lee
,
I.
, and
Du
,
L.
,
2009
, “
Response Surface Method Using Sequential Sampling for Reliability-Based Design Optimization
,”
ASME
Paper No. DETC2009-87084.
42.
Echard
,
B.
,
Gayton
,
N.
, and
Lemaire
,
M.
,
2011
, “
AK-MCS: An Active Learning Reliability Method Combining Kriging and Monte Carlo Simulation
,”
Struct. Saf.
,
33
(
2
), pp.
145
154
.
43.
Chen
,
Z.
,
Qiu
,
H.
,
Gao
,
L.
,
Li
,
X.
, and
Li
,
P.
,
2014
, “
A Local Adaptive Sampling Method for Reliability-Based Design Optimization Using Kriging Model
,”
Struct. Multidiscip. Optim.
,
49
(
3
), pp.
401
416
.
44.
Picheny
,
V.
,
Kim
,
N.-H.
,
Haftka
,
R. T.
, and
Queipo
,
N. V.
, 2008, “
Conservative Predictions Using Surrogate Modeling
,”
49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, Schaumburg, IL, Apr. 7–10, pp.
7
10
.
45.
Viana
,
F. A.
,
Picheny
,
V.
, and
Haftka
,
R. T.
,
2010
, “
Using Cross Validation to Design Conservative Surrogates
,”
AIAA J.
,
48
(
10
), p.
2286
.
46.
Zhao
,
L.
,
Choi
,
K. K.
,
Lee
,
I.
, and
Gorsich
,
D.
,
2013
, “
Conservative Surrogate Model Using Weighted Kriging Variance for Sampling-Based RBDO
,”
ASME J. Mech. Des.
,
135
(
9
), p.
091003
.
47.
Picheny
,
V.
,
Kim
,
N.-H.
,
Haftka
,
R. T.
, and
Peters
,
J.
, 2006, “
Conservative Estimation of Probability of Failure
,”
11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
, Portsmouth, VA, Sept. 6–8, pp.
6
8
.
48.
Sjöstedt-de Luna
,
S.
, and
Young
,
A.
,
2003
, “
The Bootstrap and Kriging Prediction Intervals
,”
Scand. J. Stat.
,
30
(
1
), pp.
175
192
.
49.
Lee
,
I.
,
Choi
,
K. K.
,
Noh
,
Y.
,
Zhao
,
L.
, and
Gorsich
,
D.
,
2011
, “
Sampling-Based Stochastic Sensitivity Analysis Using Score Functions for RBDO Problems With Correlated Random Variables
,”
ASME J. Mech. Des.
,
133
(
2
), p.
021003
.
50.
Keane
,
A.
, and
Nair
,
P.
,
2005
,
Computational Approaches for Aerospace Design: The Pursuit of Excellence
,
Wiley
, Hoboken, NJ.
51.
Žilinskas
,
A.
,
1992
, “
A Review of Statistical Models for Global Optimization
,”
J. Global Optim.
,
2
(
2
), pp.
145
153
.
52.
Youn
,
B. D.
,
Choi
,
K.
,
Yang
,
R.-J.
, and
Gu
,
L.
,
2004
, “
Reliability-Based Design Optimization for Crashworthiness of Vehicle Side Impact
,”
Struct. Multidiscip. Optim.
,
26
(
3–4
), pp.
272
283
.
You do not currently have access to this content.