In the early-phase design of complex systems, a model of design performance is coupled with visualizations of competing designs and used to aid human decision-makers in finding and understanding an optimal design. This consists of understanding the tradeoffs among multiple criteria of a “good” design and the features of good designs. Current visualization techniques are limited when visualizing many performance criteria and/or do not explicitly relate the mapping between the design space and the objective space. We present a new technique called Cityplot, which can visualize a sample of an arbitrary (continuous or combinatorial) design space and the corresponding single or multidimensional objective space simultaneously. Essentially a superposition of a dimensionally reduced representation of the design decisions and bar plots representing the multiple criteria of the objective space, Cityplot can provide explicit information on the relationships between the design decisions and the design criteria. Cityplot can present decision settings in different parts of the space and reveal information on the decision → criteria mapping, such as sensitivity, smoothness, and key decisions that result in particular criteria values. By focusing the Cityplot on the Pareto frontier from the criteria, Cityplot can reveal tradeoffs and Pareto optimal design families without prior assumptions on the structure of either. The method is demonstrated on two toy problems and two real engineered systems, namely, the NASA earth observing system (EOS) and a guidance, navigation and control (GNC) system.

References

1.
Hazelrigg
,
G. A.
,
1998
, “
A Framework for Decision-Based Engineering Design
,”
ASME J. Mech. Des.
,
120
(
4
), pp.
653
658
.
2.
Mistree
,
F.
,
Smith
,
W.
, and
Bras
,
B.
,
1993
, “
A Decision-Based Approach to Concurrent Design
,”
Concurrent Engineering
,
Springer
,
Boston, MA
, pp.
127
158
.
3.
Collopy
,
P. D.
, and
Hollingsworth
,
P. M.
,
2011
, “
Value-Driven Design
,”
J. Aircr.
,
48
(
3
), pp.
749
759
.
4.
Miller
,
S. W.
,
Simpson
,
T. W.
, and
Yukish
,
M. A.
,
2015
, “
Design as a Sequential Decision Process: A Method for Reducing Design Set Space Using Models to Bound Objectives
,”
ASME
Paper No. DETC2015-46909.
5.
Selva
,
D.
,
2012
, “
Rule-Based System Architecting of Earth Observation Satellite Systems
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
6.
Woodruff
,
M. J.
,
Reed
,
P. M.
, and
Simpson
,
T. W.
,
2013
, “
Many Objective Visual Analytics: Rethinking the Design of Complex Engineered Systems
,”
Struct. Multidiscip. Optim.
,
48
(
1
), pp.
201
219
.
7.
Ross
,
A. M.
, and
Hastings
,
D. E.
,
2005
, “
The Tradespace Exploration Paradigm
,”
INCOSE International Symposium
, Rochester, NY, p.
13
.
8.
Balling
,
R.
,
1999
, “
Design by Shopping: A New Paradigm?
,”
Third World Congress of Structural and Multidisciplinary Optimization (WCMSO-3)
, Buffalo, NY, pp.
295
297
.
9.
Daskilewicz
,
M. J.
, and
German
,
B. J.
,
2010
, “
RAVE: A Graphically Driven Framework for Agile Design-Decision Support
,” 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference. Paper No.
AIAA
2010-9033. Georgia Tech Research Corporation, Atlanta, GA.
10.
Stump
,
G. M.
,
Yukish
,
M. A.
,
Martin
,
J. D.
, and
Simpson
,
T. W.
,
2004
, “
The ARL Trade Space Visualizer: An Engineering Decision-Making Tool
,”
AIAA
Paper No. AIAA 2004-4568.
11.
Decision Vis
,
2015
, “
DiscoveryDV
,” DecisionVis, LLC, State College, PA. https://www.decisionvis.com/explorerdv/. [Accessed: June 22, 2015].
12.
Eddy
,
J.
, and
Lewis
,
K. E.
,
2002
, “
Visualization of Multidimensional Design and Optimization Data Using Cloud Visualization
,”
ASME
Paper No. DETC2002/DAC-34130.
13.
Kanukolanu
,
D.
,
Lewis
,
K. E.
, and
Winer
,
E. H.
,
2006
, “
A Multidimensional Visualization Interface to Aid in Trade-Off Decisions During the Solution of Coupled Subsystems Under Uncertainty
,”
J. Comput. Inf. Sci. Eng.
,
6
(
3
), pp.
288
299
.
14.
Zhang
,
X.
,
Simpson
,
T.
,
Frecker
,
M.
, and
Lesieutre
,
G.
,
2012
, “
Supporting Knowledge Exploration and Discovery in Multi-Dimensional Data With Interactive Multiscale Visualisation
,”
J. Eng. Des.
,
23
(
1
), pp.
23
47
.
15.
Unal
,
M.
,
Warn
,
G.
, and
Simpson
,
T. W.
,
2015
, “
Introduction of a Tradeoff Index for Efficient Trade Space Exploration
,”
ASME
Paper No. DETC2015-46895.
16.
Chiu
,
P.-W.
,
Naim
,
A. M.
,
Lewis
,
K. E.
, and
Bloebaum
,
C. L.
,
2009
, “
The Hyper-Radial Visualisation Method for Multi-Attribute Decision-Making Under Uncertainty
,”
Int. J. Prod. Dev.
,
9
(
1–3
), pp.
4
31
.
17.
Agrawal
,
G.
,
Parashar
,
S.
, and
Bloebaum
,
C.
,
2006
, “
Intuitive Visualization of Hyperspace Pareto Frontier for Robustness in Multi-Attribute Decision-Making
,”
AIAA
Paper No. AIAA 2006-6962.
18.
Walker
,
G. R.
,
Rea
,
P. A.
,
Whalley
,
S.
,
Hinds
,
M.
, and
Kings
,
N. J.
,
1993
, “
Visualisation of Telecommunications Network Data
,”
BT Technol. J.
,
11
(
4
), pp.
54
63
.
19.
Hoffman
,
P. E.
, and
Grinstein
,
G. G.
,
2001
, “
A Survey of Visualizations for High-Dimensional Data Mining
,”
Information Visualization in Data Mining and Knowledge Discovery
,
U.
Fayyad
,
G.
Grinstein
, and
A.
Wierse
, eds.,
Morgan Kaufmann Publishers
,
San Diego, CA
, pp.
47
86
.
20.
Young
,
P.
,
1996
, “
Three Dimensional Information Visualisation
,” Department of Computer Science, University of Durham,
Technical Report No. 12/96
.
21.
Benedikt
,
M.
,
1991
, “
Cyberspace: Some Proposals
,”
Cyberspace
,
MIT Press
,
Cambridge, MA
, pp.
119
224
.
22.
Mareschal
,
B.
, and
Brans
,
J.-P.
,
1988
, “
Geometrical Representations for MCDA
,”
Eur. J. Oper. Res.
,
34
(
1
), pp.
69
77
.
23.
Richardson
,
T.
, and
Winer
,
E.
,
2011
, “
Visually Exploring a Design Space Through the Use of Multiple Contextual Self-Organizing Maps
,”
ASME
Paper No. DETC2011-47944.
24.
Shimoyama
,
K.
,
Lim
,
J. N.
,
Jeong
,
S.
,
Obayashi
,
S.
, and
Koishi
,
M.
,
2009
, “
Practical Implementation of Robust Design Assisted by Response Surface Approximation and Visual Data-Mining
,”
ASME J. Mech. Des.
,
131
(
6
), p.
061007
.
25.
Hastie
,
T. J.
,
Tibshirani
,
R.
, and
Friedman
,
J.
,
2009
,
The Elements of Statistical Learning
,
Springer
,
Heidelberg, Germany
.
26.
Borg
,
I.
, and
Groenen
,
P. J. F.
,
2005
,
Modern Multidimensional Scaling
,
Springer
,
Heidelberg, Germany
.
27.
Sanfeliu
,
A.
, and
Fu
,
K. S.
,
1983
, “
A Distance Measure Between Attributed Relational Graphs for Pattern Recognition
,”
IEEE Trans. Syst., Man, Cybern.
,
13
(
3
), pp.
353
362
.
28.
McAdams
,
D. A.
, and
Wood
,
K. L.
,
2002
, “
A Quantitative Similarity Metric for Design-by-Analogy
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
173
182
.
29.
McAdams
,
D. A.
,
Stone
,
R. B.
, and
Wood
,
K. L.
,
1999
, “
Functional Interdependence and Product Similarity Based on Customer Needs
,”
Res. Eng. Des.
,
11
(
1
), pp.
1
19
.
30.
Crawley
,
E.
,
Cameron
,
B.
, and
Selva
,
D.
,
2016
,
System Architecture: Strategy and Product Development for Complex Systems
,
Prentice Hall
,
Hoboken, NJ
.
31.
Gusfield
,
D.
,
2002
, “
Partition-Distance: A Problem and Class of Perfect Graphs Arising in Clustering
,”
Inf. Process. Lett.
,
82
(
3
), pp.
159
164
.
32.
Denœud
,
L.
,
2008
, “
Transfer Distance Between Partitions
,”
Adv. Data Anal. Classif.
,
2
(
3
), pp.
279
294
.
33.
Sammon
,
J. W.
,
1969
, “
A Nonlinear Mapping for Data Structure Analysis
,”
IEEE Trans. Comput.
,
18
(
5
), pp.
401
409
.
34.
The Mathworks
,
2015
, “
Cmdscale: Classical Multidimensional Scaling
,” The Mathworks, Natick, MA. http://www.mathworks.com/help/stats/cmdscale.html?s_tid=gn_loc_drop [Accessed: 22-Jun-2015].
35.
The Mathworks
,
2015
, “
Mdscale: Nonclassical Multidimensional Scaling
,” The Mathworks, Natick, MA. http://www.mathworks.com/help/stats/mdscale.html. [Accessed: 22-Jun-2015].
36.
Scikit-Learn Developers
,
2015
, “
sklearn.manifold.MDS
,” Scikit-Learn Developers. http://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html. [Accessed: 22-Jun-2015].
37.
Zhao
,
Y.
,
2014
, “
Multidimensional Scaling (MDS) With R
,” last accessed Apr. 5, 2016, R-Bloggers, Tel Aviv, Israel. http://www.r-bloggers.com/multidimensional-scaling-mds-with-r/. [Accessed: 05-Apr-2016].
38.
Marler
,
R. T.
, and
Arora
,
J. S.
,
2004
, “
Survey of Multi-Objective Optimization Methods for Engineering
,”
Struct. Multidiscip. Optim.
,
26
(
6
), pp.
369
395
.
39.
Andriani
,
P.
, and
McKelvey
,
B.
,
2007
, “
Beyond Gaussian Averages: Redirecting International Business and Management Research Toward Extreme Events and Power Laws
,”
J. Int. Bus. Stud.
,
38
(
7
), pp.
1212
1230
.
40.
Hedar
,
A.-R.
,
2015
, “
Test Functions for Unconstrained Global Optimization: Perm Functions
,” Kyoto University, Kyoto Japan. http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page2545.htm
41.
Jamil
,
M.
, and
Yang
,
X. S.
,
2013
, “
A Literature Survey of Benchmark Functions for Global Optimisation Problems Xin-She Yang
,”
Int. J. Math. Modell. Numer. Optim.
,
4
(
2
), pp.
150
194
.
42.
Dominguez-Garcia
,
A.
,
Hanuschak
,
G.
,
Hall
,
S.
, and
Crawley
,
E.
,
2007
, “
A Comparison of GNC Architectural Approaches for Robotic and Human-Rated Spacecraft
,”
AIAA
Paper No. AIAA 2007-6338.
You do not currently have access to this content.