Complex, large-scale engineered systems are an integral part of modern society. The cost of these systems is often high, while their ability to react to emergent requirements can be low. This paper proposes evolvability, based on usable excess, as a possible metric to promote system longevity. An equation for the usability of excess, previously defined only in terms of quantity, is improved to include the attributes of type, location, and form as well as quantity. A methodology for evaluating a system's evolvability is also presented. Using an automated assembly line as an example, we show that system evolvability can be modeled as a function of usable excess.

References

1.
Hansen
,
T. F.
,
2002
, “
Is Modularity Necessary for Evolvability? Remarks on the Relationship Between Pleiotropy and Evolvability
,”
Bio Syst.
,
69
, pp.
83
94
.
2.
Skiles
,
S. M.
,
Singh
,
V.
,
Krager
,
J.
,
Seepersad
,
C. C.
,
Wood
,
K. L.
, and
Jensen
,
D.
,
2006
, “
Adapted Concept Generation and Computation Techniques for the Application of a Transformer Design Theory
,”
ASME
Paper No. DETC2006-99584.
3.
Singh
,
V.
,
Skiles
,
S. M.
,
Krager
,
J. E.
,
Wood
,
K. L.
,
Jensen
,
D.
, and
Sierakowski
,
R.
,
2009
, “
Innovations in Design Through Transformation: A Fundamental Study of Transformation Principles
,”
ASME J. Mech. Des.
,
131
(
8
), p.
081010
.
4.
Ross
,
A. M.
, and
Hasigns
,
D. E.
,
2006
, “
Assessing Changeability in Aerospace Systems Architecting and Design Using Dynamic Multi-Attribute Tradespace Exploration
,” AIAA Paper No. AIAA 2006-7255.
5.
Ferguson
,
S.
,
Siddiqi
,
A.
,
Lewis
,
K.
, and
de Weck
,
O.
,
2007
, “
Flexible and Reconfigurable Systems: Nomenclature and Review
,”
ASME
Paper No. DETC2007-35745.
6.
Olewnik
,
A.
,
Brauen
,
T.
,
Ferguson
,
S.
, and
Lewis
,
K.
,
2004
, “
A Framework for Flexible Systems and Its Implementation in Multiattribute Decision Making
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
412
419
.
7.
Keese
,
D. A.
,
Seepersad
,
C. C.
, and
Wood
,
K. L.
,
2009
, “
Product Flexibility Measurement With Enhanced Change Modes and Effects Analysis (CMEA)
,”
Int. J. Mass Customisation
,
3
(
2
), pp.
115
145
.
8.
Saleh
,
J. H.
, and
Hastings
,
D. E.
,
2000
, “
On Flexibility in Design: Analyzing Flexibility of Space Systems
,” AIAA Paper No. AIAA 2000-5098.
9.
Tilstra
,
A. H.
,
Seepersad
,
C. C.
, and
Wood
,
K. L.
,
2009
, “
Analysis of Product Flexibility for Future Evolution Based on Design Guidelines and a High-Definition Design Structure Matrix
,”
ASME
Paper No. DETC2009-87118.
10.
Siddiqi
,
A.
, and
de Weck
,
O.
,
2008
, “
Modeling Methods and Conceptual Design Principles for Reconfigurable Systems
,”
ASME J. Mech. Des.
,
130
, p. 101102.
11.
Haldaman
,
J.
, and
Parkinson
,
M. B.
,
2010
, “
Reconfigurable Products and Their Means of Reconfiguration
,”
ASME
Paper No. DETC2010-28528.
12.
Ferguson
,
S. M.
, and
Lewis
,
K.
,
2006
, “
Effective Development of Reconfigurable Systems Using Linear State-Feedback Control
,”
AIAA J.
,
44
(
4
), pp.
868
878
.
13.
Madni
,
A. M.
, and
Epstein
,
D. J.
,
2012
, “
Adaptable Platform-Based Engineering: Key Enablers and Outlook for the Future
,”
Systems Engineering
,
15
(
1
), pp.
95
107
.
14.
Siddiqi
,
A.
, and
de Weck
,
O. L.
,
2009
, “
Reconfigurability in Planetary Surface Vehicles
,”
J. Br. Interplanet. Soc.
,
64
, pp.
589
601
.
15.
Keese
,
D.
,
Tilstra
,
A.
,
Seepersad
,
C.
, and
Wood
,
K.
,
2007
, “
Empirically-Derived Principles for Designing Products With Flexibility for Future Evolution
,”
ASME
Paper No. DETC2007-35695.
16.
Tilstra
,
A. H.
,
Backlund
,
P. B.
,
Seepersad
,
C. C.
, and
Wood
,
K. L.
,
2008
, “
Industrial Case Studies in Product Flexibility for Future Evolution: An Application and Evaluation of Design Guidelines
,”
ASME
Paper No. DETC2008-49370.
17.
Bar-Yam
,
Y.
,
2003
, “
When Systems Engineering Fails—Toward Complex Systems Engineering
,”
IEEE International Conference on Systems, Man, and Cybernetics
, pp.
2021
2028
.
18.
Rouse
,
W. B.
,
2007
, “
Complex Engineered, Organizational and Natural Systems
,”
Syst. Eng.
,
10
(
3
), pp.
260
271
.
19.
Simpson
,
T. W.
, and
Martins
,
J. R. R. A.
,
2011
, “
Multidisciplinary Design Optimization for Complex Engineered Systems: Report From a National Science Foundation Workshop
,”
ASME J. Mech. Des.
,
133
(
10
), p.
101002
.
20.
Bloebaum
,
C. L.
, and
McGowan
,
A.-M. R.
,
2012
, “
The Design of Large-Scale Complex Engineered Systems: Present Challenges and Future Promise
,” AIAA Paper No. AIAA 2012-5571.
21.
Siddiqi
,
A.
,
de Weck
,
O. L.
,
Robinson
,
B.
, and
Keller
,
R.
,
2011
, “
Characterizing the Dynamics of Design Change
,”
International Conference on Engineering Design
.
22.
Summers
,
J. D.
, and
Shah
,
J. J.
,
2010
, “
Mechanical Engineering Design Complexity Metrics: Size, Coupling, and Solvability
,”
ASME J. Mech. Des.
,
132
(
2
), p.
021004
.
23.
Brown
,
O.
,
Long
,
A.
,
Shah
,
N.
,
Eremenko
,
P.
, and
Hamilton
,
B. A.
,
2007
, “
System Lifecycle Cost Under Uncertainty as a Design Metric Encompassing the Value of Architectural Flexibility
,” AIAA Paper No. AIAA 2007-6023.
24.
Lewis
,
K. E.
, and
Collopy
,
P. D.
,
2012
, “
The Role of Engineering Design in Large-Scale Complex Systems
,” AIAA Paper No. AIAA 2012-5573.
25.
Bloebaum
,
C. L.
,
Collopy
,
P. D.
, and
Hazelrigg
,
G. A.
,
2012
, “
NSF/NASA Workshop on the Design of Large-Scale Complex Engineered Systems—From Research to Product Realization
,” AIAA Paper No. AIAA 2012-5572.
26.
Tackett
,
M. W. P.
,
Mattson
,
C. A.
, and
Ferguson
,
S. M.
,
2014
, “
A Model for Quantifying System Evolvability Based on Excess and Capacity
,”
ASME J. Mech. Des.
,
135
, p.
051002
.
27.
Alfaris
,
A.
,
Siddiqi
,
A.
,
Rizk
,
C.
, and
de Weck
,
O.
,
2010
, “
Hierarchical Decomposition and Multidomain Formulation for the Design of Complex Sustainable Systems
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091003
.
28.
Gonzalez-Zugasti
,
J. P.
,
Otto
,
K. N.
, and
Baker
,
J. D.
,
2000
, “
A Method for Architecting Product Platforms
,”
Res. Eng. Des.
,
12
(
2
), pp.
61
72
.
29.
Smaling
,
R.
, and
de Weck
,
O.
,
2007
, “
Assessing Risks and Opportunities of Technology Infusion in System Design
,”
Syst. Eng.
,
10
(
1
), pp.
1
25
.
30.
Sha
,
Z.
, and
Panchal
,
J. H.
,
2014
, “
Estimating Local Decision-Making Behavior in Complex Evolutionary Systems
,”
ASME J. Mech. Des.
,
136
(
6
), p.
061003
.
31.
Tilstra
,
A. H.
,
Seepersad
,
C. C.
, and
Wood
,
K.
,
2010
, “
The Repeatability of High Definition Design Structure Matrix (HDDSM) Models for Representing Product Architecture
,”
ASME
Paper No. DETC2010-28717.
32.
Browning
,
T. R.
,
2001
, “
Applying the Design Structure Matrix to System Decomposition and Integration Problems: A Review and New Directions
,”
IEEE Trans. Eng. Manage.
,
48
(
3
), pp.
292
306
.
33.
Suh
,
E. S.
,
Furst
,
M. R.
,
Mihalyov
,
K. J.
, and
de Weck
,
O.
,
2009
, “
Technology Infusion for Complex Systems: A Framework and Case Study
,”
Syst. Eng.
,
13
, pp.
186
203
.
34.
Sandborn
,
P. A.
,
Thomas
,
E.
,
Herald
,
J.
,
Houston
,
J.
, and
Houston
,
J.
,
2003
, “
Optimum Technology Insertion Into Systems Based on the Assessment of Viability
,”
IEEE Trans. Compon. Packag. Technol.
,
26
(
4
), pp.
734
738
.
35.
Salis
,
G.
,
2012
, “
LEDs Are Making Inroads on Automotive Lighting Systems
,”
Power Electron. Technol.
,
38
, pp.
8
13
.
36.
Silver
,
M. R.
, and
de Weck
,
O. L.
,
2007
, “
Time-Expanded Decision Networks: A Framework for Designing Evolvable Complex Systems
,”
Syst. Eng.
,
10
(
2
), pp.
167
186
.
37.
Messac
,
A.
,
2000
, “
From Dubious Construction of Objective Functions to the Application of Physical Programming
,”
AIAA J.
,
38
(
1
), pp.
155
163
.
38.
Ramanathan
,
R.
, and
Ganesh
,
L.
,
1994
, “
Group Preference Aggregation Methods Employed in AHP: An Evaluation and an Intrinsic Process for Deriving Members' Weightages
,”
Eur. J. Oper. Res.
,
79
(
2
), pp.
249
265
.
39.
Pawson
,
R.
,
Wong
,
G.
, and
Owen
,
L.
,
2011
, “
Known Knowns, Known Unknowns, Unknown Unknowns: The Predicament of Evidence-Based Policy
,”
Am. J. Eval.
,
32
(4), pp. 518–546.
40.
Hanisch
,
C.
, and
Munz
,
G.
,
2008
, “
Evolvability and the Intangibles
,”
Assem. Autom.
,
28
(
3
), pp.
194
199
.
41.
Ferreira
,
P.
,
Lohse
,
N.
,
Razon
,
M.
,
Larizza
,
P.
, and
Triggiani
,
G.
,
2012
, “
Skill Based Configuration Methodology for Evolvable Mechatronic Systems
,”
IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society
, pp.
4366
4371
.
42.
Bryan
,
A.
,
Hu
,
S. J.
, and
Koren
,
Y.
,
2013
, “
Assembly System Reconfiguration Planning
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041005
.
43.
Spicer
,
P.
, and
Carlo
,
H. J.
,
2007
, “
Integrating Reconfiguration Cost Into the Design of Multi-Period Scalable Reconfigurable Manufacturing Systems
,”
ASME J. Manuf. Sci. Eng.
,
129
(
1
), pp.
202
210
.
44.
Hopkins
,
J.
,
1950
, “
A Procedure for Quantifying Subjective Appraisals of Odor, Flavor and Texture of Foodstuffs
,”
Biometrics
,
6
(
1
), pp.
1
16
.
45.
Baker
,
N.
, and
Freeland
,
J.
,
1975
, “
Recent Advances in r&d Benefit Measurement and Project Selection Methods
,”
Manage. Sci.
,
21
(
10
), pp.
1164
1175
.
46.
Kolich
,
M.
,
2008
, “
A Conceptual Framework Proposed to Formalize the Scientific Investigation of Automobile Seat Comfort
,”
Appl. Ergon.
,
39
(
1
), pp.
15
27
.
You do not currently have access to this content.