One real challenge for multidisciplinary design optimization (MDO) problems to gain a robust solution is the propagation of uncertainty from one discipline to another. Most existing methods only consider an MDO problem in the deterministic manner or find a solution which is robust for a single-disciplinary optimization problem. These rare methods for solving MDO problems under uncertainty are usually computationally expensive. This paper proposes a robust sequential MDO (RS-MDO) approach based on a sequential MDO (S-MDO) framework. First, a robust solution is obtained by giving each discipline full autonomy to perform optimization without considering other disciplines. A tolerance range is specified for each coupling variable to take care of uncertainty propagation in the coupled system. Then the obtained robust extreme points of global variables and coupling variables are dispatched into subsystems to perform robust optimization (RO) sequentially. Additional constraints are added in each subsystem to keep the consistency and to guarantee a robust solution. To find a solution with such strict constraints, genetic algorithm (GA) is used as a solver in each optimization stage. The proposed RS-MDO can save significant amount of computational efforts by using the sequential optimization procedure. Since all iterations in the sequential optimization stage can be processed in parallel, this robust MDO approach can be more time-saving. Numerical and engineering examples are provided to demonstrate the availability and effectiveness of the proposed approach.

References

1.
Cramer
,
E. J.
,
Dennis
,
J. E.
, Jr.
,
Frank
,
P. D.
,
Lewis
,
R. M.
, and
Shubin
,
G. R.
,
1994
, “
Problem Formulation for Multidisciplinary Optimization
,”
SIAM J. Optim.
,
4
(
4
), pp.
754
776
.
2.
Sobieszczanski-Sobieski
,
J.
,
1988
, “
Optimization by Decomposition: A Step From Hierarchic to Non-Hierarchic Systems
,”
Recent Advances in Multidisciplinary Analysis and Optimization
, Hampton, VA, Sept. 28–30, p.
51
.http://ntrs.nasa.gov/search.jsp?R=19890004052
3.
Sobieszczanski-Sobieski
,
J.
,
Agte
,
J. S.
, and
Sandusky
,
R. R.
,
2000
, “
Bilevel Integrated System Synthesis
,”
AIAA J.
,
38
(
1
), pp.
164
172
.
4.
Braun
,
R.
,
Gage
,
P.
,
Kroo
,
I.
, and
Sobieski
,
I.
,
1996
, “
Implementation and Performance Issues in Collaborative Optimization
,”
AIAA
Paper No. 1996-4017, pp. 295–305.
5.
Braun
,
R. D.
,
1996
, “
Collaborative Optimization: An Architecture for Large-Scale Distributed Design
,”
Ph.D. thesis
, Stanford University, Stanford, CA.http://dl.acm.org/citation.cfm?id=237968
6.
Roth
,
B.
, and
Kroo
,
I.
,
2008
, “
Enhanced Collaborative Optimization
,” 12th
AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference
, Victoria, BC, Paper No. AIAA 2008-5841.
7.
Kim
,
H. M.
,
Michelena
,
N. F.
,
Papalambros
,
P. Y.
, and
Jiang
,
T.
,
2003
, “
Target Cascading in Optimal System Design
,”
ASME J. Mech. Des.
,
125
(
3
), pp.
474
480
.
8.
Martins
,
J. R.
, and
Lambe
,
A. B.
,
2013
, “
Multidisciplinary Design Optimization: A Survey of Architectures
,”
AIAA J.
,
51
(
9
), pp.
2049
2075
.
9.
Zhou
,
J.
,
Li
,
M.
, and
Min
,
Xu.
,
2015
, “
A New Sequential Multi-Disciplinary Optimization Method for Bi-Level Decomposed Systems
,”
ASME
Paper No. DETC2015-46307.
10.
Taguchi
,
G.
,
1978
, “
Performance Analysis Design
,”
Int. J. Prod. Res.
,
16
(
6
), pp.
521
530
.
11.
Ben-Tal
,
A.
,
El Ghaoui
,
L.
, and
Nemirovski
,
A.
,
2009
,
Robust Optimization
,
Princeton University Press
,
Princeton, NJ
.
12.
Ben-Tal
,
A.
, and
Nemirovski
,
A.
,
2002
, “
Robust Optimization—Methodology and Applications
,”
Math. Prog.
,
92
(
3
), pp.
453
480
.
13.
Beyer
,
H.-G.
, and
Sendhoff
,
B.
,
2007
, “
Robust Optimization—A Comprehensive Survey
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
33
), pp.
3190
3218
.
14.
Park
,
G.-J.
,
Lee
,
T.-H.
,
Lee
,
K. H.
, and
Hwang
,
K.-H.
,
2006
, “
Robust Design: An Overview
,”
AIAA J.
,
44
(
1
), pp.
181
191
.
15.
Li
,
M.
,
Azarm
,
S.
, and
Boyars
,
A.
,
2006
, “
A New Deterministic Approach Using Sensitivity Region Measures for Multi-Objective Robust and Feasibility Robust Design Optimization
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
874
883
.
16.
Gunawan
,
S.
, and
Azarm
,
S.
,
2005
, “
Multi-Objective Robust Optimization Using a Sensitivity Region Concept
,”
Struct. Multidiscip. Optim.
,
29
(
1
), pp.
50
60
.
17.
Liu
,
H.
,
Chen
,
W.
,
Kokkolaras
,
M.
,
Papalambros
,
P. Y.
, and
Kim
,
H. M.
,
2006
, “
Probabilistic Analytical Target Cascading: A Moment Matching Formulation for Multilevel Optimization Under Uncertainty
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
991
1000
.
18.
Du
,
X.
, and
Chen
,
W.
,
2002
, “
Efficient Uncertainty Analysis Methods for Multidisciplinary Robust Design
,”
AIAA J.
,
40
(
3
), pp.
545
552
.
19.
Yao
,
W.
,
Chen
,
X.
,
Luo
,
W.
,
Tooren
,
M. V.
, and
Guo
,
J.
,
2011
, “
Review of Uncertainty-Based Multidisciplinary Design Optimization Methods for Aerospace Vehicles
,”
Prog. Aerosp. Sci.
,
47
(
6
), pp.
450
479
.
20.
Giassi
,
A.
,
Bennis
,
F.
, and
Maisonneuve
,
J.-J.
,
2004
, “
Multidisciplinary Design Optimisation and Robust Design Approaches Applied to Concurrent Design
,”
Struct. Multidiscip. Optim.
,
28
(
5
), pp.
356
371
.
21.
Brevault
,
L.
,
Balesdent
,
M.
,
Bérend
,
N.
, and
Le Riche
,
R.
,
2015
, “
Decoupled Multidisciplinary Design Optimization Formulation for Interdisciplinary Coupling Satisfaction Under Uncertainty
,”
AIAA J.
,
54
(
1
), pp.
186
205
.
22.
Zaman
,
K.
, and
Mahadevan
,
S.
,
2013
, “
Robustness-Based Design Optimization of Multidisciplinary System Under Epistemic Uncertainty
,”
AIAA J.
,
51
(
5
), pp.
1021
1031
.
23.
Allen
,
J. K.
,
Seepersad
,
C.
,
Choi
,
H.
, and
Mistree
,
F.
,
2006
, “
Robust Design for Multiscale and Multidisciplinary Applications
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
832
843
.
24.
Du
,
X.
,
Wang
,
Y.
, and
Chen
,
W.
,
2000
, “
Methods for Robust Multidisciplinary Design
,”
AIAA J.
,
1785
, pp.
1
10
.
25.
Kalsi
,
M.
,
Hacker
,
K.
, and
Lewis
,
K.
,
2001
, “
A Comprehensive Robust Design Approach for Decision Trade-Offs in Complex Systems Design
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
1
10
.
26.
Li
,
M.
, and
Azarm
,
S.
,
2008
, “
Multiobjective Collaborative Robust Optimization With Interval Uncertainty and Interdisciplinary Uncertainty Propagation
,”
ASME J. Mech. Des.
,
130
(
8
), p.
081402
.
27.
Hu
,
W.
,
Azarm
,
S.
, and
Almansoori
,
A.
,
2013
, “
New Approximation Assisted Multi-Objective Collaborative Robust Optimization (New AA-McRO) Under Interval Uncertainty
,”
Struct. Multidiscip. Optim.
,
47
(
1
), pp.
19
35
.
28.
Park
,
G.-J.
,
2007
,
Analytic Methods for Design Practice
,
Springer
,
Berlin
.
29.
Zhou
,
J.
, and
Li
,
M.
,
2014
, “
Advanced Robust Optimization With Interval Uncertainty Using a Single-Looped Structure and Sequential Quadratic Programming
,”
ASME J. Mech. Des.
,
136
(
2
), p.
021008
.
30.
Williams
,
N.
,
Azarm
,
S.
, and
Kannan
,
P.
,
2008
, “
Engineering Product Design Optimization for Retail Channel Acceptance
,”
ASME J. Mech. Des.
,
130
(
6
), p.
061402
.
You do not currently have access to this content.