Every year design practitioners and researchers develop new methods for understanding users and solving problems. This increasingly large collection of methods causes a problem for novice designers: How does one choose which design methods to use for a given problem? Experienced designers can provide case studies that document which methods they used, but studying these cases to infer appropriate methods for a novel problem is inefficient. This research addresses that issue by applying techniques from content-based and collaborative filtering to automatically recommend design methods, given a particular problem. Specifically, we demonstrate the quality with which different algorithms recommend 39 design methods out of an 800+ case study dataset. We find that knowing which methods occur frequently together allows one to recommend design methods more effectively than just using the text of the problem description itself. Furthermore, we demonstrate that automatically grouping frequently co-occurring methods using spectral clustering replicates human-provided groupings to 92% accuracy. By leveraging existing case studies, recommendation algorithms can help novice designers efficiently navigate the increasing array of design methods, leading to more effective product design.

References

1.
Roschuni
,
C.
,
Agogino
,
A.
, and
Beckman
,
S.
,
2011
, “
The DesignExchange: Supporting the Design Community of Practice
,”
International Conference on Engineering Design
, International Conference on Engineering Design (ICED '11), Vol.
8
, pp.
255
264
.
2.
Broadbent
,
G.
, and
Ward
,
A.
,
1969
,
Design Methods in Architecture
,
AA Papers
,
Lund Humphries
.
3.
Broadbent
,
G.
,
1979
, “
The Development of Design Methods
,”
Des. Methods Theor.
,
13
(
1
), pp.
41
45
.
4.
Jones
,
J. C.
,
1992
,
Design Methods
, 2nd ed.
Wiley
, John Wiley and Sons, New York.
5.
Margolin
,
V.
, and
Buchanan
,
G. R.
,
1996
,
The Idea of Design
,
The MIT Press
, Cambridge, MA.
6.
McCarthy
,
J. M.
,
2005
, “
Engineering Design in 2030: Human Centered Design
,”
ASME J. Mech. Des.
,
127
(
3
), p.
357
.10.1115/1.1900151
7.
Collopy
,
P.
,
2013
, “
Opportunities in Engineering Design Research
,”
ASME J. Mech. Des.
,
135
(
2
), p.
020301
.10.1115/1.4023278
8.
Van Pelt
,
A.
, and
Hey
,
J.
,
2011
, “
Using TRIZ and Human-Centered Design for Consumer Product Development
,”
Procedia Eng.
,
9
, pp.
688
693
.10.1016/j.proeng.2011.03.156
9.
Altshuller
,
G.
,
Shulyak
,
L.
,
Rodman
,
S.
, and
Fedoseev
,
U.
,
1998
,
40 Principles: TRIZ Keys to Innovation
, Vol.
1
, Technical Innovation Center Inc., Worcester, MA.
10.
Resnick
,
P.
, and
Varian
,
H. R.
,
1997
, “
Recommender Systems
,”
Commun. ACM
,
40
(
3
), pp.
56
58
.10.1145/245108.245121
11.
Adomavicius
,
G.
, and
Tuzhilin
,
A.
,
2005
, “
Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions
,”
IEEE Trans. Knowledge Data Eng.
,
17
(
6
), pp.
734
749
.10.1109/TKDE.2005.99
12.
Manning
,
C. D.
,
Raghavan
,
P.
, and
Schütze
,
H.
,
2008
,
Introduction to Information Retrieval
,
Cambridge University Press
,
New York
.
13.
Page
,
L.
,
Brin
,
S.
,
Motwani
,
R.
, and
Winograd
,
T.
,
1999
, “
The PageRank Citation Ranking: Bringing Order to the Web
,” Technical Report No. 1999-66, Stanford InfoLab. Previous No. SIDL-WP-1999-0120.
14.
Deerwester
,
S. C.
,
Dumais
,
S. T.
,
Landauer
,
T. K.
,
Furnas
,
G. W.
, and
Harshman
,
R. A.
,
1990
, “
Indexing by Latent Semantic Analysis
,”
JASIS
,
41
(
6
), pp.
391
407
.10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
15.
Dong
,
A.
,
Hill
,
A. W.
, and
Agogino
,
A. M.
,
2004
, “
A Document Analysis Method for Characterizing Design Team Performance
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
378
385
.10.1115/1.1711818
16.
Blei
,
D. M.
,
Ng
,
A. Y.
, and
Jordan
,
M. I.
,
2003
, “
Latent Dirichlet Allocation
,”
J. Mach. Learn. Res.
,
3
, pp.
993
1022
.
17.
Burges
,
C.
,
Shaked
,
T.
,
Renshaw
,
E.
,
Lazier
,
A.
,
Deeds
,
M.
,
Hamilton
,
N.
, and
Hullender
,
G.
,
2005
, “
Learning to Rank Using Gradient Descent
,”
Proceedings of the 22nd International Conference on Machine Learning
,
ICML’05
, ACM, pp.
89
96
.10.1145/1102351.1102363
18.
Cao
,
Z.
,
Qin
,
T.
,
Liu
,
T.-Y.
,
Tsai
,
M.-F.
, and
Li
,
H.
,
2007
, “
Learning to Rank: From Pairwise Approach to Listwise Approach
,”
Proceedings of the 24th International Conference on Machine Learning
,
ICML’07
, ACM, pp.
129
136
.10.1145/1273496.1273513
19.
Liu
,
T.-Y.
,
2007
, “
Learning to Rank for Information Retrieval
,”
Found Trends Inf. Retrieval
,
3
(
3
), pp.
225
331
.10.1561/1500000016
20.
Herlocker
,
J. L.
,
Konstan
,
J. A.
,
Borchers
,
A.
, and
Riedl
,
J.
,
1999
, “
An Algorithmic Framework for Performing Collaborative Filtering
,”
Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
,
SIGIR’99
, ACM, pp.
230
237
.10.1145/312624.312682
21.
Bell
,
R. M.
,
Koren
,
Y.
, and
Volinsky
,
C.
,
2007
, The BellKor Solution to the Netflix Prize.
22.
Salakhutdinov
,
R.
, and
Mnih
,
A.
,
2008
, “
Bayesian Probabilistic Matrix Factorization Using Markov Chain Monte Carlo
,”
Proceedings of the 25th International Conference on Machine Learning
,
ICML’08
, ACM, pp.
880
887
.10.1145/1390156.1390267
23.
Nazemian
,
A.
,
Gholami
,
H.
, and
Taghiyareh
,
F.
,
2012
, “
An Improved Model of Trust-Aware Recommender Systems Using Distrust Metric
,”
IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining
(
ASONAM
), pp.
1079
1084
.10.1109/ASONAM.2012.186
24.
Badaro
,
G.
,
Hajj
,
H.
,
El-Hajj
,
W.
, and
Nachman
,
L.
,
2013
, “
A Hybrid Approach With Collaborative Filtering for Recommender Systems
,”
9th International Wireless Communications and Mobile Computing Conference
(
IWCMC
), pp.
349
354
.10.1109/IWCMC.2013.6583584
25.
Ghazanfar
,
M. A.
, and
Prugel-Bennett
,
A.
,
2010
, “
A Scalable, Accurate Hybrid Recommender System
,”
Proceedings of 3rd International Conference on Knowledge Discovery and Data Mining
, pp.
94
98
.10.1109/WKDD.2010.117
26.
Freund
,
Y.
, and
Schapire
,
R. E.
,
1997
, “
A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
,”
J. Comput. Syst. Sci.
,
55
(
1
), pp.
119
139
.10.1006/jcss.1997.1504
27.
Yujie
,
Z.
, and
Licai
,
W.
,
2010
, “
Some Challenges for Context-Aware Recommender Systems
,”
5th International Conference on Computer Science and Education
(
ICCSE
), pp.
362
365
.10.1109/ICCSE.2010.5593612
28.
Jones
,
J. C.
, and
Thornley
,
D.
, eds.,
1962
,
Conference on Design Methods: Papers Presented at the Conference on Systematic and Intuitive Methods in Engineering, Industrial Design, Architecture and Communications, Pergamon
, Pergamon Press, Oxford, UK.
29.
Helen Hamlyn Centre for Design,
2013
, “
Designing With People: Methods
,” http://designingwithpeople.rca.ac.uk/methods
30.
Panchal
,
J. H.
, and
Messer
,
M.
,
2011
, “
Extracting the Structure of Design Information From Collaborative Tagging
,”
ASME J. Comput. Inf. Sci. Eng.
,
11
(
4
), p.
041007
.10.1115/1.3617447
31.
Li
,
Z.
, and
Ramani
,
K.
,
2007
, “
Ontology-Based Design Information Extraction and Retrieval
,”
AI EDAM
,
21
(
4
), pp.
137
154
.10.1017/S0890060407070199
32.
Suh
,
N. P.
,
2001
,
Axiomatic Design: Advances and Applications
(The Oxford Series on Advanced Manufacturing),
Oxford University
, Oxford University Press, New York.
33.
Pahl
,
G.
,
Beitz
,
W.
,
Feldhusen
,
J.
, and
Grote
,
K.-H.
,
1984
,
Engineering Design: A Systematic Approach
,
Springer-Verlag, London, UK
.
34.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
,
Prettenhofer
,
P.
,
Weiss
,
R.
,
Dubourg
,
V.
,
Vanderplas
,
J.
,
Passos
,
A.
,
Cournapeau
,
D.
,
Brucher
,
M.
,
Perrot
,
M.
, and
Duchesnay
,
E.
,
2011
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
, pp.
2825
2830
.
35.
Fuge
,
M.
, and
Agogino
,
A.
,
2014
, “
User Research Methods for Development Engineering: A Study of Method Usage With IDEO's HCD Connect
,”
ASME International Design Engineering Technical Conferences
, Buffalo, NY, August 17–20.
36.
Friedman
,
J.
,
Hastie
,
T.
, and
Tibshirani
,
R.
,
2008
, “
Sparse Inverse Covariance Estimation With the Graphical Lasso
,”
Biostatistics
,
9
(
3
), pp.
432
441
.10.1093/biostatistics/kxm045
37.
Herlocker
,
J. L.
,
Konstan
,
J. A.
,
Terveen
,
L. G.
, and
Riedl
,
J. T.
,
2004
, “
Evaluating Collaborative Filtering Recommender Systems
,”
ACM Trans. Inf. Syst.
,
22
(
1
), pp.
5
53
.10.1145/963770.963772
38.
Wu
,
W.
,
He
,
L.
, and
Yang
,
J.
,
2012
, “
Evaluating Recommender Systems
,”
7th International Conference on Digital Information Management
(
ICDIM
), pp.
56
61
. 10.1109/ICDIM.2012.6360092
39.
Gordon
,
M.
, and
Pathak
,
P.
,
1999
, “
Finding Information on the World Wide Web: The Retrieval Effectiveness of Search Engines
,”
Inf. Process. Manage.
,
35
(
2
), pp.
141
180
.10.1016/S0306-4573(98)00041-7
40.
Wood
,
W. H.
, and
Agogino
,
A. M.
,
2005
, “
Decision-Based Conceptual Design: Modeling and Navigating Heterogeneous Design Spaces
,”
ASME J. Mech. Des.
,
127
(
1
), pp.
2
–11.10.1115/1.1799612
41.
Hernandez
,
N. V.
,
Schmidt
,
L. C.
, and
Okudan
,
G. E.
,
2013
, “
Systematic Ideation Effectiveness Study of TRIZ
,”
ASME J. Mech. Des.
,
135
(
10
), p.
101009
.10.1115/1.4024976
42.
Kalyanasundaram
,
V.
, and
Lewis
,
K.
,
2014
, “
A Function Based Approach for Product Integration
,”
ASME J. Mech. Des.
,
136
(
4
), p.
041002
.10.1115/1.4026032
43.
Srivastava
,
J.
, and
Shu
,
L. H.
,
2013
, “
Affordances and Product Design to Support Environmentally Conscious Behavior
,”
ASME J. Mech. Des.
,
135
(
10
), p.
101006
.10.1115/1.4025288
44.
Fuge
,
M.
,
Tee
,
K.
,
Agogino
,
A.
, and
Maton
,
N.
,
2014
, “
Analysis of Collaborative Design Networks: A Case Study of OpenIDEO
,”
ASME J. Comput. Inf. Sci. Eng.
,
14
(
2
), p.
021009
.10.1115/1.4026510
You do not currently have access to this content.