Design-by-analogy is a powerful approach to augment traditional concept generation methods by expanding the set of generated ideas using similarity relationships from solutions to analogous problems. While the concept of design-by-analogy has been known for some time, few actual methods and tools exist to assist designers in systematically seeking and identifying analogies from general data sources, databases, or repositories, such as patent databases. A new method for extracting functional analogies from data sources has been developed to provide this capability, here based on a functional basis rather than form or conflict descriptions. Building on past research, we utilize a functional vector space model (VSM) to quantify analogous similarity of an idea's functionality. We quantitatively evaluate the functional similarity between represented design problems and, in this case, patent descriptions of products. We also develop document parsing algorithms to reduce text descriptions of the data sources down to the key functions, for use in the functional similarity analysis and functional vector space modeling. To do this, we apply Zipf's law on word count order reduction to reduce the words within the documents down to the applicable functionally critical terms, thus providing a mapping process for function based search. The reduction of a document into functional analogous words enables the matching to novel ideas that are functionally similar, which can be customized various ways. This approach thereby provides relevant sources of design-by-analogy inspiration. As a verification of the approach, two original design problem case studies illustrate the distance range of analogical solutions that can be extracted. This range extends from very near-field, literal solutions to far-field cross-domain analogies.

References

1.
Salton
,
G.
,
1971
,
The SMART Retrieval System—Experiments in Automatic Document Retrieval
,
Prentice Hall
,
Englewood Cliffs, NJ
.
2.
Salton
,
G.
,
Wong
,
A.
, and
Yang
,
C. S.
,
1975
, “
A Vector Space Model for Automatic Indexing
,”
Commun. ACM
,
18
(11), pp.
613
620
.10.1145/361219.361220
3.
Schmid
,
H.
,
1994
, “
Probabilistic Part-of-Speech Tagging Using Decision Tree
,”
International Conference on New Methods in Language Processing
,
Manchester, UK
, Vol. 12, pp.
44
49
.
4.
Kurfman
,
M.
,
Rajan
,
J.
,
Stone
,
R.
, and
Wood
,
K.
,
2001
, “
Functional Modeling Experimental Studies
,”
ASME
Paper No. DETC2001-21709. 10.1115/DETC2001-21709
5.
Kurfman
,
M.
,
Rajan
,
J.
,
Stone
,
R.
, and
Wood
,
K.
,
2003
, “
Experimental Studies Assessing the Repeatability of a Functional Modeling Derivation Method
,”
ASME J. Mech. Des.
,
125
(
4
), pp.
682
693
.10.1115/1.1625400
6.
Stone
,
R.
, and
Wood
,
K. L.
,
2000
, “
Development of a Functional Basis for Design
,”
ASME J. Mech. Des.
,
122
(
4
), pp.
359
370
.10.1115/1.1289637
7.
Hirtz
,
J.
,
Stone
,
R. B.
,
Mcadams
,
D. A.
,
Szykman
,
S.
, and
Wood
,
K. L.
,
2002
, “
A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts
,”
Res. Eng. Des.
,
13
, pp.
65
82
.10.1007/s00163-001-0008-3
8.
Otto
,
K.
, and
Wood
,
K.
,
2001
,
Product Design Techniques in Reverse Engineering and New Product Development
,
Prentice Hall
,
Upper Saddle River, NJ
.
9.
Manning
,
C. D.
,
Raghavan
,
P.
, and
Schutz
,
H.
,
2009
,
An Introduction to Information Retrieval
,
Cambridge University
,
Cambridge, UK
.
10.
Salton
,
G.
, and
Waldstein
,
R. K.
,
1978
, “
Term Relevance Weights in On-Line Information Retrieval
,”
Inform. Process. Manage.
,
14
(1), pp.
29
35
.10.1016/0306-4573(78)90055-9
11.
Wyllys
,
R. E.
,
1981
, “
Empirical and Theoretical Bases of Zipf's Law
,”
Libr. Trends
,
30
(1), pp.
53
64
.
12.
Zipf
,
G. K.
,
1949
,
Human Behavior and the Principle of Least Effort
,
Addison-Wesley
, Oxford, UK.
13.
Fellbaum
,
C.
,
1998
,
WordNet: An Electronic Lexical Database
,
MIT
,
Cambridge, MA
.
14.
Miller
,
G. A.
,
1995
, “
WordNet: A Lexical Database for English
,”
Commun. ACM
,
38
(11), pp.
39
41
.10.1145/219717.219748
15.
Pahl
,
G.
, and
Beitz
,
W.
,
1996
,
Engineering Design: A Systematic Approach
, 2nd ed.,
Springer-Verlag
,
London, UK
.
16.
Chan
,
J.
,
Fu
,
K.
,
Schunn
,
C.
,
Cagan
,
J.
,
Wood
,
K.
, and
Kotovsky
,
K.
,
2011
, “
On the Benefits and Pitfalls of Analogies for Innovative Design: Ideation Performance Based on Analogical Distance, Commonness, and Modality of Examples
,”
ASME J. Mech. Des.
,
133
(
8
), p.
081004
.10.1115/1.4004396
17.
Linsey
,
J.
,
Murphy
,
J.
,
Markman
,
A.
,
Wood
,
K. L.
, and
Kortoglu
,
T.
,
2006
, “
Representing Analogies: Increasing the Probability of Innovation
,”
ASME
Paper No. DETC2006-99383. 10.1115/DETC2006-99383
18.
Chakrabarti
,
A.
, and
Bligh
,
T. P.
,
2001
, “
A Scheme for Functional Reasoning in Conceptual Design
,”
Des. Stud.
,
22
(6), pp.
493
517
.10.1016/S0142-694X(01)00008-4
19.
Cheong
,
H.
,
Chiu
,
I.
,
Shu
,
L. H.
,
Stone
,
R.
, and
McAdams
,
D.
,
2011
, “
Biologically Meaningful Keywords for Functional Terms of the Functional Basis
,”
ASME J. Mech. Des.
,
133
(
2
), p.
021007
.10.1115/1.4003249
20.
Shu
,
L. H.
,
Ueda
,
K.
,
Chiu
,
I.
, and
Cheong
,
H.
,
2011
, “
Biologically Inspired Design
,”
CIRP Ann.
,
60
(2), pp.
673
693
.10.1016/j.cirp.2011.06.001
21.
Stone
,
R.
, and
Wood
,
K.
,
2000
, “
A Heuristic Method for Identifying Modules for Product Architectures
,”
Des. Stud.
,
21
(1), pp.
5
31
.
22.
Salonen
,
M.
,
Holtta-Otto
,
K.
, and
Otto
,
K.
,
2008
, “
Effecting Product Reliability and Life Cycle Costs With Early Design Phase Product Architecture Decisions
,”
Int. J. Prod. Dev.
,
5
(1/2), pp.
109
124
.10.1504/IJPD.2008.016373
23.
Bohm
,
M.
, and
Stone
,
R.
,
2004
, “
Product Design Support: Exploring a Design Repository System
,”
ASME
Paper No. IMECE2004-61746. 10.1115/IMECE2004-61746
24.
Bohm
,
M. R.
,
Vucovich
,
J. P.
, and
Stone
,
R. B.
,
2005
, “
Capturing Creativity: Using a Design Repository to Drive Concept Innovation
,”
ASME
Paper No. DETC2005-85105. 10.1115/DETC2005-85105
25.
Bohm
,
M.
, and
Stone
,
R.
,
2004
, “
Representing Functionality to Support Reuse: Conceptual and Supporting Functions
,”
ASME
Paper No. DETC2004-57693. 10.1115/DETC2004-57693
26.
Szykman
,
S.
,
Sriram
,
R. D.
,
Bochenek
,
C.
, and
Racz
,
J.
,
1999
, “
The NIST Design Repository Project
,”
Advances in Soft Computing—Engineering Design and Manufacturing
, R. Roy, T. Furuhashi, and P. K. Chawdhry, eds.,
Springer-Verlag
,
London.
27.
Szykman
,
S.
,
Sriram
,
R. D.
,
Bochenek
,
C.
, and
Senfaute
,
J.
,
2000
, “
Design Repositories: Next-Generation Engineering Design Databases
,”
IEEE Intell. Syst. Appl.
,
15
(3), pp.
48
55
.10.1109/5254.846285
28.
Bryant
,
C.
,
Stone
,
R.
,
McAdams
,
D.
,
Kurtoglu
,
T.
, and
Campbell
,
M.
,
2005
, “
Concept Generation From the Functional Basis of Design
,” 15th International Conference on Engineering Design: Engineering Design and the Global Economy, A. Samuel and W. Lewis (eds.), Barton, A.C.T. Engineers, Australia, pp.
1702
1715
.
29.
Bryant
,
C.
,
Stone
,
R.
,
McAdams
,
D.
,
Kurtoglu
,
T.
, and
Campbell
,
M.
,
2005
, “
A Computational Technique for Concept Generation
,”
ASME
Paper No. DETC2005-85323. 10.1115/DETC2005-85323
30.
Terpenny
,
J.
, and
Mathew
,
D.
,
2004
, “
Modeling Environment for Function-Based Conceptual Design
,”
ASME
Paper No. DETC2004-57492. 10.1115/DETC2004-57492
31.
Potter
,
S.
,
Culley
,
S. J.
,
Darlington
,
M. J.
, and
Chawdhry
,
P. K.
,
2003
, “
Automatic Conceptual Design Using Experience-Derived Heuristcs
,”
Res. Eng. Des.
,
14
(3), pp.
131
144
.10.1007/s00163-003-0034-4
32.
Chiu
,
M.
,
2003
, “
Design Moves in Situated Design With Case-Based Reasoning
,”
Des. Stud.
,
24
,(1) pp. 1–25.10.1016/S0142-694X(02)00007-8
33.
Gentner
,
D.
,
1983
, “
Structure Mapping—A Theoretical Framework for Analogy
,”
Cognit. Sci.
,
7
, pp.
155
170
.
34.
Falkenhainer
,
B. F.
,
Forbus
,
K. D.
, and
Gentner
,
D.
,
1989
, “
The Structure Mapping Engine: Algorithm and Examples
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
41
(1), pp.
1
63
.10.1016/0004-3702(89)90077-5
35.
Gentner
,
D.
, and
Markman
,
A. B.
,
1997
, “
Structure Mapping in Analogy and Similarity
,”
Am. Psychol.
,
52
(1), pp.
45
56
.10.1037/0003-066X.52.1.45
36.
Fu
,
K.
,
Chan
,
J.
,
Cagan
,
J.
,
Kotovsky
,
K.
,
Schunn
,
C.
, and
Wood
,
K.
,
2013
, “
The Meaning of “Near” and “Far”: The Impact of Structuring Design Databases and the Effect of Distance of Analogy on Design Output
,”
ASME J. Mech. Des.
,
135
(
2
), p.
021007
.10.1115/1.4023158
37.
Kryssanov
,
V. V.
,
Tamaki
,
H.
, and
Kitamura
,
S.
,
2001
, “
Understanding Design Fundamentals: How Synthesis and Analysis Drive Creativity, Resulting in Emergence
,”
Artif. Intell. Eng.
,
15
(4), pp. 329–342.10.1016/S0954-1810(01)00023-1
38.
Goldschmidt
,
G.
, and
Weil
,
M.
,
1998
, “
Contents and Structure in Design Reasoning
,”
Des. Issues
,
14
(3), pp.
85
100
.10.2307/1511899
39.
Linsey
,
J.
,
Tseng
,
I.
,
Fu
,
K.
,
Cagan
,
J.
,
Wood
,
K.
, and
Schunn
,
C.
,
2010
, “
A Study of Design Fixation, Its Mitigation and Perception in Engineering Design Faculty
,”
ASME J. Mech. Des.
,
132
(
4
), p.
1041003
.10.1115/1.4001110
40.
Goel
,
A.
,
Bhatta
,
S.
, and
Stroulia
,
E.
,
1997
, “
Kritik: An Early Case-Based Design System
,”
Issues and Applications of Case-Based Reasoning in Design
,
M.
Maher
and
P.
Pu
, eds.,
Erlbaum
,
Mahwah, NJ
, pp.
87
132
.
41.
Goel
,
A.
, and
Chandrasekaran
,
B.
,
1989
, “
Functional Representation of Designs and Redesign Problem Solving
,”
Proceedings of the Eleventh International Joint Conference on Artificial Intelligence
, pp.
1388
1394
.
42.
Bhatta
,
S.
,
Goel
,
A.
, and
Prabhakar
,
S.
,
1994
, “
Innovation in Analogical Design: A Model-Based Approach
,” Artificial Intelligence in Design'94, Springer Netherlands, Heidelberg, Germany, pp.
57
74
.
43.
Goel
,
A.
, and
Bhatta
,
S.
,
2004
, “
Use of Design Patterns in Analogy-Based Design
,”
Adv. Eng. Inf.
,
18
(2), pp.
85
94
.10.1016/j.aei.2004.09.003
44.
Navinchandra
,
D.
,
Sycara
,
K. P.
, and
Narasimhan
,
S.
,
1991
, “
Behavioral Synthesis in CADET, a Case-Based Design Tool
,”
Seventh IEEE Conference on Artificial Intelligence Application
s
, Vol. 1, pp.
217
22
1.
45.
Qian
,
L.
, and
Gero
,
J. S.
,
1992
, “
A Design Support System Using Analogy
,”
Artificial Intelligence in Design
, J. S. Gero and F. Sudweeks, eds.,
Springer
,
The Netherlands
, Heidelberg, Germany, pp.
795
813
.
46.
Liu
,
Y.-C.
,
Chakrabarti
,
A.
, and
Bligh
,
T. P.
,
2000
, Artificial Intelligence in Design'00, J. S. Gero (ed.), Springer Netherlands, Heidelberg, Germany, pp.
499
519
.
47.
Liu
,
Y.-C.
,
Bligh
,
T. P.
, and
Chakrabarti
,
A.
,
2003
, “
Towards an `Ideal' Approach for Concept Generation
,”
Des. Stud.
,
24
(
4
), pp.
341
355
.10.1016/S0142-694X(03)00003-6
48.
Hacco
,
E.
, and
Shu
,
L. H.
,
2002
, “
Biomimetic Concept Generation Applied to Design for Remanufacture
,”
ASME
Paper No. DETC2002/DFM-34177. 10.1115/DETC2002/DFM-34177
49.
Charlton
,
C. T.
, and
Wallace
,
K. M.
,
2000
, “
A Web Broker for Component Retrieval in Mechanical Engineering
,”
Des. Stud.
,
21
(2), pp.
167
186
.10.1016/S0142-694X(99)00040-X
50.
Nagel
,
J. K.
,
Stone
,
R.
, and
McAdams
,
D.
,
2010
, “
An Engineering-to-Biology Thesaurus for Engineering Design
,”
ASME
Paper No. DETC2010-28233. 10.1115/DETC2010-28233
51.
Chakrabarti
,
A.
,
Sarkar
,
P.
,
Leelavathamma
,
B.
, and
Nataraju
,
B. S.
,
2005
, “
A Functional Representation for Aiding in Biomimetic and Artificial Inspiration of New Ideas
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
19
(2), pp.
113
132
.10.1017/S0890060405050109
52.
Chakrabarti
,
A.
,
2009
, “
Design Creativity Research
,”
Product Research
, N. R. Srinivasa Raghavan and J. A. Cafeo, eds.,
Springer
Netherlands
, Heidelberg, Germany, pp.
17
39
.
53.
Yang
,
M. C.
,
Wood
,
W. H.
, and
Cutkosky
,
M. R.
,
2005
, “
Design Information Retrieval: A Thesauri-Base Approach for Reuse of Informal Design Information
,”
Eng. Comput.
,
21
(2), pp.
177
192
.10.1007/s00366-005-0003-9
54.
Wood
,
W. H.
,
Yang
,
M. C.
,
Cutkosky
,
M. R.
, and
Agogino
,
A. M.
,
1998
, “
Design Information Retrieval: Improving Access to the Informal Side of Design
,”
ASME Design Engineering Technical Conference
,
Atlanta, GA
.
55.
Yang
,
M. C.
, and
Cutkosky
,
M. R.
,
1997
, “
Automated Indexing of Design Concepts for Information Management
,”
International Conference on Engineering Design
,
Tampere
, Schriftenreihe WDK, pp.
191
196
.
56.
Ahmed
,
S.
,
2005
, “
An Approach to Assist Designers With Their Queries and Designs
,”
ASME
Paper No. DETC2006-99705. 10.1115/DETC2006-99705
57.
Linsey
,
J.
,
Markman
,
A. B.
, and
Wood
,
K. L.
,
2008
, “
WordTrees: A Method for Design-by-Analogy
,”
ASEE Annual Conference
.
58.
Linsey
,
J.
,
Markman
,
A. B.
, and
Wood
,
K. L.
,
2012
, “
Design by Analogy: A Study of the WordTree Method for Problem Re-Representation
,”
ASME J. Mech. Des.
,
134
(
4
), p.
041009
. 10.1115/1.4006145
59.
Linsey
,
J. S.
,
Wood
,
K. L.
, and
Markman
,
A. B.
,
2008
, “
Increasing Innovation: Presentation and Evaluation of the WordTree Design-by-Analogy Method
,”
ASME
Paper No. DETC2008-49317. 10.1115/DETC2008-49317
60.
Segers
,
N. M.
,
De Vries
,
B.
, and
Achten
,
H. H.
,
2005
, “
Do Word Graphs Stimulate Design?
,”
Des. Stud.
,
26
(6), pp.
625
647
.10.1016/j.destud.2005.05.002
61.
Segers
,
N.
, and
De Vries
,
B.
,
2003
, “
The Idea Space System: Words as Handles to a Comprehensive Data Structure
,”
10th International Conference on Computer Aided Architectural Design Futures
,
Digital Design—Research and Practice, Kluwer Academic Publishers, Dordrecht
.
62.
Verhaegen
,
P.
,
D'hondt
,
J.
,
Vandevenne
,
D.
,
Dewulf
,
S.
, and
Duflou
,
J. R.
,
2011
, “
Identifying Candidates for Design-by-Analogy
,”
Comput. Ind.
,
62
(4), pp.
446
459
.10.1016/j.compind.2010.12.007
63.
Gentner
,
D.
,
1981
, “
Some Interesting Differences Between Verbs and Nouns
,”
Cognit. Brain Theory
,
4
(2), pp.
161
178
.
64.
Chiu
,
I.
, and
Shu
,
L. H.
,
2007
, “
Using Language as Related Stimuli for Concept Generation
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
21
(2), pp.
103
121
. 10.1017/S0890060407070175
65.
Kang
,
I.
,
Na
,
S.
,
Kim
,
J.
, and
Lee
,
J.
,
2007
, “
Cluster-Based Patent Retrieva
,”
Inform. Process. Manage.
,
43
(5), pp. 1173–1182.10.1016/j.ipm.2006.11.006
66.
Trippe
,
A. J.
,
2003
, “
Patinformatics: Tasks to Tools
,”
World Pat. Inform.
,
25
(3), pp. 211–221.10.1016/S0172-2190(03)00079-6
67.
Tseng
,
Y.
,
Lin
,
C.
, and
Lin
,
Y.
,
2007
, “
Test Mining Techniques for Patent Analysis
,”
Inf. Process. Manage.
,
43
(5), pp. 1216–1247.10.1016/j.ipm.2006.11.011
68.
Altshuller
,
G. S.
, and
Shapiro
,
R. B.
,
1956
, “
О Психологии изобретательского творчества (On the Psychology of Inventive Creation)
,”
Вопросы Психологии (Psychol. Issues)
,
6
, pp.
37
39
(in Russian).
69.
Zhang
,
R.
,
Cha
,
J.
, and
Lu
,
Y.
,
2007
, “
A Conceptual Design Model Using Axiomatic Design, Functional Basis and TRIZ
,”
Proceedings of the 2007 IEEE IEEM
, Singapore, pp.
1807
1810
.10.1109/IEEM.2007.4419504
70.
Cascini
,
G.
, and
Russo
,
D.
,
2007
, “
Computer-Aided Analysis of Patents and Search for TRIZ Contradictions
,”
Int. J. Prod. Dev.
,
4
(1/2), pp.
52
67
.10.1504/IJPD.2007.011533
71.
Souili
,
A.
,
Cavallucci
,
D.
,
Rousselot
,
F.
, and
Zanni
,
C.
,
2011
, “
Starting From Patents to Find Inputs to the Problem Graph Model of IDM-TRIZ
,” TRIZ Future 2011, Dublin, Ireland.
72.
Souili
,
A.
, and
Cavallucci
,
D.
,
2012
, “
Toward an Automatic Extraction of IDM Concepts From Patents
,” CIRP Design, Bangalore, India, Apr. 28–30.
73.
Fu
,
K.
, “
Discovering and Exploring Structure in Design Databases and Its Role in Stimulating Design by Analogy
,” Ph.D. thesis, Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA.
74.
Fu
,
K.
,
Cagan
,
J.
,
Kotovsky
,
K.
, and
Wood
,
K.
,
2013
, “
Discovering Structure in Design Databases Through Function and Surface Based Mapping
,”
ASME J. Mech. Des.
,
135
(
3
), p.
031006
10.1115/1.4023484
75.
Szykman
,
S.
,
Sriram
,
R. D.
,
Bochenek
,
C.
,
Racz
,
J. W.
, and
Senfaute
,
J.
,
2000
, “
Design Repositories: Engineering Design's New Knowledge Base
,”
IEEE Intell. Syst.
,
15
, pp.
48
55
.10.1109/5254.846285
76.
Koch
,
S.
,
Bosch
,
H.
,
Giereth
,
M.
, and
Ertl
,
T.
,
2009
, “
Iterative Integration of Visual Insights during Patent Search and Analysis
,”
IEEE
Symposium on Visual Analytics Science and Technology,
Atlantic City, NJ
, pp.
203
210
.10.1109/VAST.2009.5333564
77.
Mukherjea
,
S.
,
Bhuvan
,
B.
, and
Kankar
,
P.
,
2005
, “
Information Retrieval and Knowledge Discovery Utilizing a BioMedical Patent Semantic Web
,”
IEEE Trans. Knowl. Data Eng.
,
17
(8), pp.
1099
1110
.10.1109/TKDE.2005.130
78.
Chakrabarti
,
S.
,
Dom
,
B.
,
Agrawal
,
R.
, and
Raghavan
,
P.
,
1998
, “
Scalable Feature Selection, Classification and Signature Generation for Organizing Large Text Databases Into Hierarchical Topic Taxonomies
,”
VLDB J.
,
7
(3), pp.
163
178
.10.1007/s007780050061
79.
Duran-Novoa
,
R.
,
Leon-Rovira
,
N.
,
Aguayo-Tellez
,
H.
, and
Said
,
D.
,
2011
, “
Inventive Problem Solving Based on Dialectical Negation, Using Evolutionary Algorithms and TRIZ Heuristics
,”
Comput. Ind.
,
62
(4), pp.
437
445
.10.1016/j.compind.2010.12.006
80.
Hernandez
,
N. V.
,
Schmidt
,
L. C.
, and
Okudan
,
G. E.
,
2012
, “
Systematic Ideation Effectiveness Study of TRIZ
,”
ASME
Paper No. DETC2012-70294. 10.1115/DETC2012-7029410.1115/DETC2012-70294
81.
Hernandez
,
N. V.
,
Schmidt
,
L. C.
, and
Okudan
,
G. E.
,
2012
, “
Experimental Assessment of TRIZ Effectiveness in Idea Generation
,”
ASEE Annual Conference
,
San Antonio, TX
.
82.
Krasnoslobodtsev
,
V.
, and
Langevin
,
R.
,
2005
, “
TRIZ Application in Development of Climbing Robots
,”
First TRIZ Symposium
,
Japan
.
83.
Liang
,
Y.
,
Tan
,
R.
, and
Ma
,
J.
,
2008
, “
Patent Analysis With Text Mining for TRIZ
,”
IEEE
ICMIT, Bangkok, Thailand, pp.
1147
1151
. 10.1109/ICMIT.2008.4654531
84.
Nakagawa
,
T.
,
2012
, “
Creative Problem-Solving Methodologies TRIZ/USIT: Overview of My 14 Years in Research, Education, and Promotion
,” The Bulletin of the Cultural and Natural Sciences in Osaka Gakuin University, Vol.
64
.
85.
Nix
,
A. A.
,
Sherret
,
B.
, and
Stone
,
R. B.
,
2011
, “
A Function Based Approach to TRIZ
,”
ASME
Paper No. DETC2011-47973. 10.1115/DETC2011-47973
86.
Houssin
,
R.
, and
Coulibaly
,
A.
,
2011
, “
An Approach to Solve Contradiction Problems for Safety Integration in Innovative Design Process
,”
Comput. Ind.
,
62
(4), pp.
398
406
.10.1016/j.compind.2010.12.009
87.
Mann
,
D.
,
Dewulf
,
S.
,
Zlotin
,
B.
, and
Zusman
,
A.
,
2003
,
Matrix 2003, Updating the TRIZ Contradiction Matrix
,
CREAX
, Kurtrijk,
Belgium
.
88.
CREAX
,
2012
, “
CREAX: Creativity for Innovation
,” http://www.creax.com
89.
Goldfire
,
I. M.
,
2012
, “
Invention Machine Goldfire: Unleashing the Power of Research
,” Available: http://inventionmachine.com/products-and-services/innovation-software/goldfire-Research/
90.
Bhatta
,
S.
, and
Goel
,
A.
,
1996
, “
From Design Experiences to Generic Mechanisms: Model-Based Learning in Analogical Design
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
10
(2), pp.
131
136
.10.1017/S0890060400001372
91.
Chiu
,
I.
, and
Shu
,
L. H.
,
2005
, “
Bridging Cross-Domain Terminology for Biomimetic Design
,”
ASME
Paper No. DETC2005-84908. 10.1115/DETC2005-84908
92.
Vincent
,
J. F. V.
,
Bogatyreva
,
O. A.
,
Bogatyreva
,
N. R.
,
Bowyer
,
A.
, and
Pahl
,
A. K.
,
2006
, “
Biomimetics: Its Practice and Theory
,”
J. R. Soc. Interface
,
3
(9), pp.
471
482
.10.1098/rsif.2006.0127
93.
Salton
,
G.
, and
McGill
,
M. J.
,
1986
,
Introduction to Modern Information Retrieval
,
McGraw-Hill
,
New York, NY
.
94.
van Rijsbergen
,
C. J.
,
1979
,
Information Retrieval
,
Butterworth-Heinemann
,
Oxford, UK
.
95.
Rindflesch
,
T. C.
,
1996
, “
Natural Language Processing
,”
Ann. Rev. Appl. Linguist.
,
16
, pp. 70–85.10.1017/S0267190500001446
96.
Moldovan
,
A.
,
Bot
,
R. I.
, and
Wanka
,
G.
,
2005
, “
Latent Semantic Indexing for Patent Documents
,”
Int. J. Appl. Math. Comput. Sci.
,
15
, pp.
551
560
.BPZ2-0018-0050
97.
Dumais
,
S. T.
,
1995
, “
Latent Semantic Indexing (LSI): TREC-3 Report
,”
Proceedings of TREC
.
98.
Porter
,
M. F.
,
1980
, “
An Algorithm for Suffix Stripping
,”
Program
,
14
(3), pp.
130
137
.10.1108/eb046814
99.
Linsey
,
J.
,
Clauss
,
E. F.
,
Kurtoglu
,
T.
,
Murphy
,
J. T.
,
Wood
,
K. L.
, and
Markman
,
A. B.
,
2011
, “
An Experimental Study of Group Idea Generation Techniques: Understanding the Roles of Idea Representation and Viewing Methods
,”
ASME J. Mech. Des.
,
133
(
3
), p.
031008
.10.1115/1.4003498
100.
Osborn
,
A.
,
1957
,
Applied Imagination
,
Scribner
,
New York, NY
.
101.
Markman
,
A. B.
, and
Wood
,
K. L.
,
2009
,
Tools for Innovation: The Science Behind Practical Methods that Drive New Ideas
,
Oxford University
,
New York, NY
.
102.
Vangundy
,
A. B.
,
1988
,
Techniques of Structured Problem Solving
, 2nd ed.,
Van Nostrand Reinhold Company
,
NY
.
103.
McAdams
,
D.
, and
Wood
,
K.
,
2002
, “
A Quantitative Similarity Metric for Design by Analogy
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
173
182
.10.1115/1.1475317
104.
Murphy
,
J. T.
,
2011
, “
Patent-Based Analogy Search Tool for Innovative Concept Generation
,” Ph.D. thesis, Department of Mechanical Engineering, The University of Texas, Austin, TX.
105.
Fu
,
K.
,
Murphy
,
J.
,
Yang
,
M.
,
Otto
,
K.
,
Jensen
,
D.
, and
Wood
,
K. L.
,
2013
, “
Investigating the Effect of Functionality Level of Analogical Stimulation on Design Outcomes
,” Korea-Japan Design Engineering Workshops (DEWS), Kitakyushu, Fukuoka, Japan, Nov. 28–30.
You do not currently have access to this content.