We pose a reformulated model for optimal design and allocation of conventional (CV), hybrid electric (HEV), and plug-in hybrid electric (PHEV) vehicles to obtain global solutions that minimize life cycle greenhouse gas (GHG) emissions of the fleet. The reformulation is a twice-differentiable, factorable, nonconvex mixed-integer nonlinear programming (MINLP) model that can be solved globally using a convexification-based branch-and-reduce algorithm. We compare results to a randomized multistart local-search approach for the original formulation and find that local-search algorithms locate global solutions in 59% of trials for the two-segment case and 18% of trials for the three-segment case. The results indicate that minimum GHG emissions are achieved with a mix of PHEVs sized for 25–45 miles of electric travel. Larger battery packs allow longer travel on electrical energy, but production and weight of underutilized batteries result in higher GHG emissions. Under the current average U.S. grid mix, PHEVs offer a nearly 50% reduction in life cycle GHG emissions relative to equivalent conventional vehicles and about 5% improvement over HEVs when driven on the standard urban driving cycle. Optimal allocation of different PHEVs to different drivers turns out to be of second order importance for minimizing net life cycle GHGs.

References

1.
Bandivadekar
,
A.
,
Bodek
,
K.
,
Cheah
,
L.
,
Evans
,
C.
,
Groode
,
T.
,
Heywood
,
J.
,
Kasseris
,
E.
,
Kromer
,
M.
, and
Weiss
,
M.
, 2008,
On the Road in 2035: Reducing Transportation’s Petroleum Consumption and GHG Emissions
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
2.
Shiau
,
C.-S. N.
,
Kaushal
,
N.
,
Hendrickson
,
C. T.
,
Peterson
,
S. B.
,
Whitacre
,
J. F.
, and
Michalek
,
J. J.
, 2010, “
A Mixed-Integer Nonlinear Programming Model for Deterministic Global Optimization of Plug-In Hybrid Vehicle Design and Allocation
,”
ASME 2010 International Design Engineering Technical Conferences
,
Montreal
,
Quebec, Canada
.
3.
Frank
,
A. A.
, 2007, “
Plug-In Hybrid Vehicles for a Sustainable Future
,”
Am. Sci.
,
95
, pp.
158
165
.
4.
Samaras
,
C.
, and
Meisterling
,
K.
, 2008, “
Life Cycle Assessment of Greenhouse Gas Emissions From Plug-In Hybrid Vehicles: Implications for Policy
,”
Environ. Sci. Technol.
,
42
, pp.
3170
3176
.
5.
Shiau
,
C.-S. N.
,
Kaushal
,
N.
,
Hendrickson
,
C. T.
,
Peterson
,
S. B.
,
Whitacre
,
J. F.
, and
Michalek
,
J. J.
, 2010, “
Optimal Plug-In Hybrid Electric Vehicle Design and Allocation for Minimum Life Cycle Cost, Petroleum Consumption, and Greenhouse Gas Emissions
,”
ASME J. Mech. Des.
,
132
, p.
091013
.
6.
Papalambros
,
P. Y.
, and
Wilde
,
D. J.
, 2000,
Principles of Optimal Design: Modeling and Computation,
2nd ed.,
Cambridge University Press
,
New York
.
7.
Arora
,
J. S.
,
Elwakeil
,
O. A.
,
Chahande
,
A. I.
, and
Hsieh
,
C. C.
, “
1995, Global Optimization Methods for Engineering Applications—A Review
,”
Struct. Optim.
,
9
, pp.
137
159
.
8.
Conn
,
A. R.
,
Scheinberg
,
K.
, and
Vicente
,
L. N.
, 2009,
Introduction to Derivative-Free Optimization
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
9.
Tawarmalani
,
M.
, and
Sahinidis
,
N.
, 2002,
Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming
,
Kluwer Academic
,
Dordrecht, Netherlands
.
10.
Federal Highway Administration
, 2010,
National Household Travel Survey 2009
,
Department of Transportation
,
Washington, DC
.
11.
Tawarmalani
,
M.
, and
Sahinidis
,
N.V.
, 2004, “
Global Optimization of Mixed-Integer Nonlinear Programs: A Theoretical and Computational Study
,”
Math. Programy.
,
99
, pp.
563
591
.
12.
Grossmann
,
I.
, 2002, “
Review of Nonlinear Mixed-Integer and Disjunctive Programming Techniques
,”
Optim. Eng.
,
3
, pp.
227
252
.
13.
Gunluk
,
O.
, and
Linderoth
,
J.
, 2010, “
Perspective Reformulations of Mixed Integer Nonlinear Programs With Indicator Variables
,”
Math. Program.
,
124
, pp.
183
205
.
You do not currently have access to this content.