A recently developed metamodel, radial basis function-based high-dimensional model representation (RBF-HDMR), shows promise as a metamodel for high-dimensional expensive black-box functions. This work extends the modeling capability of RBF-HDMR from the current second-order form to any higher order. More importantly, the modeling process “uncovers” black-box functions so that not only is a more accurate metamodel obtained, but also key information about the function can be gained and thus the black-box function can be turned “white.” The key information that can be gained includes: (1) functional form, (2) (non)linearity with respect to each variable, and (3) variable correlations. The black-box “uncovering” process is based on identifying the existence of certain variable correlations through two derived theorems. The adaptive process of exploration and modeling reveals the black-box functions until all significant variable correlations are found. The black-box functional form is then represented by a structure matrix that can manifest all orders of correlated behavior of the variables. The resultant metamodel and its revealed inner structure lend themselves well to applications such as sensitivity analysis, decomposition, visualization, and optimization. The proposed approach is tested with theoretical and practical examples. The test results demonstrate the effectiveness and efficiency of the proposed approach.

1.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
, 1989, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
0883-4237,
4
(
4
), pp.
409
423
.
2.
Myers
,
R. H.
, and
Montgomery
,
D.
, 1995,
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
,
Wiley
,
Toronto, ON
.
3.
Simpson
,
T. W.
,
Lin
,
D. K. J.
, and
Chen
,
W.
, 2001, “
Sampling Strategies for Computer Experiments: Design and Analysis
,”
Int. J. Reliab. Appl.
1598-0073,
2
(
3
), pp.
209
240
.
4.
Jin
,
R.
,
Chen
,
W.
, and
Sudjianto
,
A.
, 2005, “
An Efficient Algorithm for Constructing Optimal Design of Computer Experiments
,”
J. Stat. Plan. Infer.
0378-3758,
134
(
1
), pp.
268
287
.
5.
Shan
,
S.
, and
Wang
,
G. G.
, 2010, “
Survey of Modeling and Optimization Strategies to Solve High-Dimensional Design Problems With Computationally-Expensive Black-Box Functions
,”
Struct. Multidiscip. Optim.
1615-147X,
41
, pp.
219
241
6.
Chen
,
V. C. P.
,
Tsui
,
K. -L.
,
Barton
,
R. R.
, and
Meckesheimer
,
M.
, 2006, “
A Review on Design, Modeling and Applications of Computer Experiments
,”
IIE Trans.
0740-817X,
38
, pp.
273
291
.
7.
Queipo
,
N. V.
,
Haftka
,
R. T.
,
Shyy
,
W.
,
Goel
,
T.
,
Vaidyanathan
,
R.
, and
Tucker
,
P. K.
, 2005, “
Surrogate-Based Analysis and Optimization
,”
Prog. Aerosp. Sci.
0376-0421,
41
, pp.
1
28
.
8.
Simpson
,
T. W.
,
Toropov
,
V.
, and
Balabanov
,
V.
, 2008, “
Design and Analysis of Computer Experiments in Multidisciplinary Design Optimization: A Review of How Far We Have Come—or Not
,”
12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
, Victoria, BC, Canada. Sep. 10–12, Paper No. 2208-5802.
9.
Wang
,
G. G.
, and
Shan
,
S.
, 2007, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
0161-8458,
129
, pp.
370
389
.
10.
Koch
,
P. N.
,
Simpson
,
T. W.
,
Allen
,
J. K.
, and
Mistree
,
F.
, 1999, “
Statistical Approximations for Multidisciplinary Design Optimization: The Problem of Size
,”
J. Aircr.
0021-8669,
36
(
1
), pp.
275
286
.
11.
Simpson
,
T. W.
,
Peplinski
,
J.
,
Koch
,
P. N.
, and
Allen
,
J. K.
, 2001, “
Metamodels for Computer-Based Engineering Design: Survey and Recommendations
,”
Eng. Comput.
0177-0667,
17
(
2
), pp.
129
150
.
12.
Friedman
,
J. H.
, and
Stuetzle
,
W.
, 1981, “
Projection Pursuit Regression
,”
J. Am. Stat. Assoc.
0003-1291,
76
(
376
), pp.
817
823
.
13.
Friedman
,
J. H.
, 1991, “
Multivariate Adaptive Regressive Splines
,”
Ann. Stat.
0090-5364,
19
(
1
), pp.
1
67
.
14.
Tunga
,
M. A.
, and
Demiralp
,
M.
, 2006, “
Hybrid High Dimensional Model Representation (HHDMR) on the Partitioned Data
,”
J. Comput. Appl. Math.
0377-0427,
185
(
1
), pp.
107
132
.
15.
Rabitz
,
H.
,
Alis
,
Ö. F.
,
Shorter
,
J.
, and
Shim
,
K.
, 1999, “
Efficient Input—Output Model Representations
,”
Comput. Phys. Commun.
0010-4655,
117
(
1–2
), pp.
11
20
.
16.
Rabitz
,
H.
, and
Alis
,
Ö. F.
, 1999, “
General Foundations of High-Dimensional Model Representations
,”
J. Math. Chem.
0259-9791,
25
(
2–3
), pp.
197
233
.
17.
Shorter
,
J. A.
,
Ip
,
P. C.
, and
Rabitz
,
H. A.
, 1999, “
An Efficient Chemical Kinetics Solver Using High Dimensional Model Representation
,”
J. Phys. Chem. A
1089-5639,
103
(
36
), pp.
7192
7198
.
18.
Li
,
G.
,
Wang
,
S. -W.
,
Rosenthal
,
C.
, and
Rabitz
,
H.
, 2001, “
High Dimensional Model Representations Generated From Low Dimensional Data Samples. I. mp-Cut-HDMR
,”
J. Math. Chem.
0259-9791,
30
(
1
), pp.
1
30
.
19.
Tunga
,
M. A.
, and
Demiralp
,
M.
, 2005, “
A Factorized High Dimensional Model Representation on the Nodes of a Finite Hyperprismatic Regular Grid
,”
Appl. Math. Comput.
0096-3003,
164
(
3
), pp.
865
883
.
20.
Shan
,
S.
, and
Wang
,
G. G.
, 2009, “
Metamodeling for High Dimensional Simulation-Based Design Problems
,”
ASME J. Mech. Des.
0161-8458,
132
, p.
051009
.
21.
Booker
,
A. J.
, 1998, “
Design and Analysis of Computer Experiments
,”
Seventh AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
, St. Louis, MO, pp.
118
128
.
22.
Hooker
,
G.
, 2004, “
Discovering Additive Structure in Black Box Functions
,”
Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, Seattle, WA, Aug. 22–25.
23.
Wang
,
L.
,
Beeson
,
D.
,
Wiggs
,
G.
, and
Rayasam
,
M.
, 2006, “
A Comparison of Meta-Modeling Methods Using Practical Industry Requirements
,”
47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, Newport, RI, May 1–4, AIAA Paper No. 2006-1811.
24.
Tecko
,
I. V.
,
Livingstone
,
D. J.
, and
Luik
,
A. I.
, 1995, “
Neural Network Studies. 1. Comparison of Overfitting and Overtraining
,”
J. Chem. Inf. Comput. Sci.
0095-2338,
35
, pp.
826
833
.
25.
Schittkowski
,
K.
, 1987,
More Test Examples for Nonlinear Programming Codes
,
Springer-Verlag
,
New York
.
You do not currently have access to this content.