Sources of reducible uncertainty present a particular challenge to engineering design problems by forcing designers to make decisions about how much uncertainty to consider as acceptable in final design solutions. Many of the existing approaches for design under uncertainty require potentially unavailable or unknown information about the uncertainty in a system’s input parameters, such as probability distributions, nominal values, and/or uncertain intervals. These requirements may force designers into arbitrary or even erroneous assumptions about a system’s input uncertainty. In an effort to address these challenges, a new approach for design under uncertainty is presented that can produce optimal solutions in the form of upper and lower bounds (which specify uncertain intervals) for all input parameters to a system that possess reducible uncertainty. These solutions provide minimal variation in system objectives for a maximum allowed level of input uncertainty in a multi-objective sense and furthermore guarantee as close to deterministic Pareto optimal performance as possible with respect to the uncertain parameters. The function calls required by this approach are kept to a minimum through the use of a kriging metamodel assisted multi-objective optimization technique performed in two stages. The capabilities of this approach are demonstrated through three example problems of varying complexity.

1.
Simpson
,
T. W.
,
Torpov
,
V.
,
Balabanov
,
V.
, and
Viana
,
F. A. C.
, 2008, “
Design and Analysis of Computer Experiments in Multidisciplinary Design Optimization: A Review of How Far We Have Come–or Not
,”
Proceedings of the 12th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
, Victoria, BC, Canada.
2.
Schueller
,
G. I.
, and
Jensen
,
H. A.
, 2008, “
Computational Methods in Optimization Considering Uncertainties—An Overview
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
198
(
1
), pp.
2
13
.
3.
Benanzer
,
T. W.
,
Grandhi
,
R. V.
, and
Krol
,
W. P.
, 2009, “
Reliability-Based Optimization of Design Variance to Identify Critical Tolerances
,”
Adv. Eng. Software
0965-9978,
40
, pp.
305
311
.
4.
Youn
,
B. D.
, and
Wang
,
P.
, 2008, “
Bayesian Reliability-Based Design Optimization Using Eigenvector Dimension Reduction (EDR) Method
,”
Struct. Multidiscip. Optim.
1615-147X,
36
(
2
), pp.
107
123
.
5.
Liu
,
H.
,
Chen
,
W.
, and
Sudjianto
,
A.
, 2006, “
Relative Entropy Based Method for Probabilistic Sensitivity Analysis in Engineering Design
,”
ASME J. Mech. Des.
0161-8458,
128
(
2
), pp.
326
336
.
6.
Mourelatos
,
Z. P.
, and
Zhou
,
J.
, 2006, “
A Design Optimization Method Using Evidence Theory
,”
ASME J. Mech. Des.
0161-8458,
128
(
4
), pp.
901
908
.
7.
Zhou
,
J.
, and
Mourelatos
,
Z. P.
, 2008, “
A Sequential Algorithm for Possibility-Based Design Optimization
,”
ASME J. Mech. Des.
0161-8458,
130
(
1
), p.
011001
.
8.
Liao
,
Y. S.
, and
Chiou
,
C. Y.
, 2008, “
Robust Optimum Designs of Fibre-Reinforced Composites With Design-Variable and Non-Design-Variable Uncertainties
,”
Proc. Inst. Mech. Eng., Part L: Journal of Materials: Design and Applications
1464-4207,
222
(
2
), pp.
111
121
.
9.
Hamel
,
J.
,
Li
,
M.
, and
Azarm
,
S.
, 2010, “
Design Improvement by Sensitivity Analysis Under Interval Uncertainty Using Multi-Objective Optimization
,”
ASME J. Mech. Des.
0161-8458,
132
(
8
), p.
081010
.
10.
Li
,
M.
,
Williams
,
N.
, and
Azarm
,
S.
, 2009, “
Interval Uncertainty Reduction and Single-Disciplinary Sensitivity Analysis With Multi-Objective Optimization
,”
ASME J. Mech. Des.
0161-8458,
131
(
3
), p.
031007
.
11.
Thunnissen
,
D. P.
, 2003, “
Uncertainty Classification for the Design and Development of Complex Systems
,”
Proceedings of the Third Annual Predictive Methods Conference
, Newport Beach, CA.
12.
Du
,
X.
, 2008, “
Unified Uncertainty Analysis by the First Order Reliability Method
,”
ASME J. Mech. Des.
0161-8458,
130
(
9
), p.
091401
.
13.
Gunawan
,
S.
, and
Papalambros
,
P. Y.
, 2006, “
A Bayesian Approach to Reliability-Based Optimization With Incomplete Information
,”
ASME J. Mech. Des.
0161-8458,
128
(
4
), pp.
909
918
.
14.
Wu
,
W. D.
, and
Rao
,
S. S.
, 2007, “
Uncertainty Analysis and Allocation of Joint Tolerances in Robot Manipulators Based on Interval Analysis
,”
Reliab. Eng. Syst. Saf.
0951-8320,
92
(
1
), pp.
54
64
.
15.
Li
,
M.
,
Williams
,
N.
,
Azarm
,
S.
,
Al Hashimi
,
S.
,
Almansoori
,
A.
, and
Al Qasas
,
N.
, 2009, “
Integrated Multi-Objective Robust Optimization and Sensitivity Analysis With Irreducible and Reducible Interval Uncertainty
,”
Eng. Optimiz.
0305-215X,
41
(
10
), pp.
889
908
.
16.
Qiu
,
Z.
,
Ma
,
L.
, and
Wang
,
X.
, 2009, “
Non-Probabilistic Interval Analysis Method for Dynamic Response Analysis of Nonlinear Systems With Uncertainty
,”
J. Sound Vib.
0022-460X,
319
, pp.
531
540
.
17.
Beyer
,
H. -G.
, and
Sendhoff
,
B.
, 2007, “
Robust Optimization–A Comprehensive Survey
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
196
(
33–34
), pp.
3190
3218
.
18.
Qu
,
X.
,
Haftka
,
R. T.
,
Venkataraman
,
S.
, and
Johnson
,
T. F.
, 2003, “
Deterministic and Reliability-Based Optimization of Composite Laminates for Cryogenic Environments
,”
AIAA J.
0001-1452,
41
(
10
), pp.
2029
2036
.
19.
Kale
,
A. A.
, and
Haftka
,
R. T.
, 2008, “
Tradeoff of Weight and Inspection Cost in Reliability-Based Structural Optimization
,”
J. Aircr.
0021-8669,
45
(
1
), pp.
77
85
.
20.
Miettinen
,
K.
, 1999,
Nonlinear Multi-Objective Optimization
,
Kluwer
,
Norwell, MA
.
21.
Deb
,
K.
, 2001,
Multi-Objective Optimization Using Evolutionary Algorithms
,
Wiley
,
West Sussex, UK
.
22.
Martin
,
J. D.
, and
Simpson
,
T. W.
, 2005, “
Use of Kriging Models to Approximate Deterministic Computer Models
,”
AIAA J.
0001-1452,
43
(
4
), pp.
853
863
.
23.
Arora
,
J. S.
, 2004,
Introduction to Optimum Design
, 2nd ed.,
Elsevier
,
San Diego, CA
.
24.
Magrab
,
E. B.
,
Azarm
,
S.
,
Balachandran
,
B.
,
Duncan
,
J. H.
,
Herold
,
K. E.
, and
Walsh
,
G. C.
, 2005,
An Engineer’s Guide to MATLAB
, 2nd ed.,
Prentice-Hall
,
Upper Saddle River, NJ
.
25.
Hamel
,
J.
, and
Azarm
,
S.
, 2010, “
Reducible Uncertain Interval Design (RUID) by Kriging Meta-Model Assisted Multi-Objective Optimization
,”
Proceedings of ASME IDETC/CIE Conference
, Montreal, Canada, August.
You do not currently have access to this content.