Previous versions of the material mask overlay strategy (MMOS) for topology synthesis primarily employ circular masks to simulate voids within the design region. MMOS operates on the photolithographic principle by appropriately positioning and sizing a group of negative masks and thus iteratively improves the material layout to meet the desired objective. The fundamental notion is that a group of circular masks can represent a local void of any shape. The question whether masks of more general shapes (e.g., any two-dimensional closed, nonself intersecting polygon) would offer significant enhancements in efficiently attaining the appropriate topological features in a continuum remains. This paper investigates the performance of two other mask types; elliptical and rectangular masks are compared with that of the circular ones. These are the respective modest representatives of closed curves and their polygonal approximations. First, two mean compliance minimization examples under resource constraints are solved. Thereafter, compliant pliers are synthesized using the three mask types. It is observed that the use of elliptical or rectangular masks do not offer significant advantages over the use of circular ones. On the contrary, the examples suggest that less number of circular masks are adequate to model the topology design procedure more efficiently. Thus, it is postulated that using generic simple closed curves or polygonal masks will not introduce significant benefits over circular ones in the MMOS based topology design algorithms.

1.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
, 1988, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
71
(
2
), pp.
197
224
.
2.
Bendsøe
,
M. P.
, 1995,
Optimization of Structural Topology, Shape and Material
,
Springer
,
Berlin
.
3.
Yin
,
L.
, and
Ananthasuresh
,
G. K.
, 2001, “
Topology Optimization of Compliant Mechanisms With Multiple Materials Using a Peak Function Material Interpolation Scheme
,”
Struct. Multidiscip. Optim.
1615-147X,
23
, pp.
49
62
.
4.
Saxena
,
R.
, and
Saxena
,
A.
, 2007, “
On Honeycomb Representation and SIGMOID Material Assignment in Optimal Topology Synthesis of Compliant Mechanisms
,”
Finite Elem. Anal. Design
0168-874X,
43
(
14
), pp.
1082
1098
.
5.
Guest
,
J. K.
,
Prévost
,
J. H.
, and
Belytschko
,
T.
, 2004, “
Achieving Minimum Length Scale in Topology Optimization Using Nodal Design Variables and Projection Functions
,”
Int. J. Numer. Methods Eng.
0029-5981,
61
, pp.
238
254
.
6.
Rahmatalla
,
S. F.
, and
Swan
,
C. C.
, 2004, “
A Q4/Q4 Continuum Structural Topology Optimization Implementation
,”
Struct. Multidiscip. Optim.
1615-147X,
27
, pp.
130
135
.
7.
Diaz
,
A.
, and
Sigmund
,
O.
, 1995, “
Checkerboard Patterns in Layout Optimization
,”
Struct. Optim.
0934-4373,
10
, pp.
40
45
.
8.
Jog
,
C. S.
, and
Haber
,
R. B.
, 1996, “
Stability of Finite Element Models for Distributed Parameter Optimization and Topology Design
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
130
, pp.
203
226
.
9.
Saxena
,
R.
, and
Saxena
,
A.
, 2003, “
On Honeycomb Parameterization for Topology Optimization of Compliant Mechanisms
,”
ASME Design Engineering Technical Conferences and Design Automation Conference
, Chicago, IL, Sept. 2–6, Paper No. DETC2002/DAC-48806.
10.
Sigmund
,
O.
, 1994, “
Design of Material Structures Using Topology Optimization
,” Ph.D. thesis, Department of Solid Mechanics, DTU, Denmark.
11.
Sigmund
,
O.
, 2007, “
Morphology-Based Black and White Filters for Topology Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
33
, pp.
401
424
.
12.
Poulsen
,
T. A.
, 2003, “
A New Scheme for Imposing Minimum Length Scale in Topology Optimization
,”
Int. J. Numer. Methods Eng.
0029-5981,
57
, pp.
741
760
.
13.
Yoon
,
G.
,
Kim
,
Y.
,
Bendsoe
,
M.
, and
Sigmund
,
O.
, 2004, “
Hinge-Free Topology Optimization With Embedded Translation-Invariant Differentiable Wavelet Shrinkage
,”
Struct. Multidiscip. Optim.
1615-147X,
27
, pp.
139
150
.
14.
Sangamesh
,
R. D.
,
Dinesh
,
M.
,
Sahu
,
D. K.
, and
Ananthasuresh
,
G. K.
, 2009, “
A Comparative Study of the Formulations and Benchmark Problems for the Topology Optimization of Compliant Mechanisms
,”
ASME J. Mech. Rob.
1942-4302,
1
, p.
011003
.
15.
Hetrick
,
J. A.
, and
Kota
,
S.
, 1999, “
An Energy Formulation for Parametric Size and Shape Optimization of Compliant Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
121
(
2
), pp.
229
234
.
16.
Chen
,
S.
, and
Wang
,
M. Y.
, 2007, “
Designing Distributed Compliant Mechanisms With Characteristic Stiffness
,”
Proceedings of the ASME 2007 International Design Engineering Technical Conferences and the Computers and Information in Engineering Conference
, Paper No. DETC2007-34437.
17.
Rahmatalla
,
S.
, and
Swan
,
C. C.
, 2005, “
Sparse Monolithic Compliant Mechanisms Using Continuum Structural Topology Optimization
,”
Int. J. Numer. Methods Eng.
0029-5981,
62
, pp.
1579
1605
.
18.
Chang
,
S. Y.
, and
Youn
,
S. K.
, 2006, “
Material Cloud Method—Its Mathematical Investigation and Numerical Application for 3D Engineering Design
,”
Int. J. Solids Struct.
0020-7683,
43
(
17
), pp.
5337
5354
.
19.
Sethian
,
J. A.
, and
Wiegmann
,
A.
, 2000, “
Structural Boundary via Level Set and Immersed Interface Methods
,”
J. Comput. Phys.
0021-9991,
163
(
2
), pp.
489
528
.
20.
Luo
,
J. Z.
,
Luo
,
Z.
,
Chen
,
S. K.
,
Tong
,
L. Y.
, and
Wang
,
M. Y.
, 2008, “
A New Level Set Method for Systematic Design of Hinge-Free Compliant Mechanisms
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
198
, pp.
318
331
.
21.
Wang
,
M. Y.
,
Chen
,
S. K.
,
Wang
,
X. M.
, and
Mei
,
Y. L.
, 2005, “
Design of Multi-Material Compliant Mechanisms Using Level Set Methods
,”
ASME J. Mech. Des.
0161-8458,
127
, pp.
941
956
.
22.
Jiang
,
C.
, and
Jia
,
H.
, 2006, “
Evolutionary Based Intelligent Algorithm for Topology Optimization of Structure
,”
Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications (ISDA’06)
, pp.
897
902
.
23.
Saxena
,
A.
, 2008, “
A Material-Mask Overlay Strategy for Continuum Topology Optimization of Compliant Mechanisms Using Honeycomb Discretization
,”
ASME J. Mech. Des.
0161-8458,
130
(
8
), p.
082304
.
24.
Jain
,
C.
, and
Saxena
,
A.
, 2010, “
An Improved Material-Mask Overlay Strategy for Topology Optimization of Structures and Compliant Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
132
(
6
), p.
061006
.
25.
Sharma
,
P.
, and
Saxena
,
A.
, 2010, “
On an Adaptive Mask Overlay Topology Synthesis Method
,”
ASME Design Engineering and Technical Conferences
, Montreal, Canada, Aug. 15–18, Paper No. DETC2010-29113.
26.
Gilat
,
A.
, 2004,
MATLAB: An Introduction With Applications
, 2nd ed.,
Wiley
,
New York
.
27.
Kreyszig
,
E.
, 1999,
Advanced Engineering Mathematics
, 8th ed.,
Wiley
,
New York
.
28.
Talischi
,
C.
,
Paulino
,
G. H.
, and
Le Chau
,
H.
, 2009, “
Honeycomb Wachspress Finite Elements for Structural Topology Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
37
(
6
), pp.
569
583
.
29.
Yin
,
L.
, and
Ananthasuresh
,
G. K.
, 2003, “
Design of Distributed Compliant Mechanisms
,”
Mech. Based Des. Struct. Mach.
1539-7734,
31
(
2
), pp.
151
179
.
30.
Challis
,
V. J.
, 2010, “
A Discrete Level-Set Topology Optimization Code Written in MATLAB
,”
Struct. Multidiscip. Optim.
1615-147X,
41
, pp.
453
464
.
31.
Wei
,
P.
, and
Wang
,
M. Y.
, 2009, “
Piecewise Constant Level Set Method for Structural Topology Optimization
,”
Int. J. Numer. Methods Eng.
0029-5981,
78
, pp.
379
402
.
You do not currently have access to this content.