Many engineering systems are too complex to design as a single entity. Decomposition-based design optimization methods partition a system design problem into subproblems, and coordinate subproblem solutions toward an optimal system design. Recent work has addressed formal methods for determining an ideal system partition and coordination strategy, but coordination decisions have been limited to subproblem sequencing. An additional element in a coordination strategy is the linking structure of the partitioned problem, i.e., the allocation of constraints that guarantee that the linking variables among subproblems are consistent. There may exist many alternative linking structures for a decomposition-based strategy that can be selected for a given partition, and this selection should be part of an optimal simultaneous partitioning and coordination scheme. This article develops a linking structure theory for a particular class of decomposition-based optimization algorithms, augmented Lagrangian coordination (ALC). A new formulation and coordination technique for parallel ALC implementations is introduced along with a specific linking structure theory, yielding a partitioning and coordination selection method for ALC that includes consistency constraint allocation. This method is demonstrated using an electric water pump design problem.

1.
Stanton
,
D.
, and
White
,
D.
, 1986,
Constructive Combinatorics
,
Springer-Verlag
,
New York
.
2.
Allison
,
J. T.
,
Kokkolaras
,
M.
, and
Papalambros
,
P. Y.
, 2009, “
Optimal Partitioning and Coordination Decisions in Decomposition-Based Design Optimization
,”
ASME J. Mech. Des.
0161-8458,
131
(
8
), p.
081008
.
3.
Braun
,
R. D.
, 1996, “
Collaborative Optimization: An Architecture for Large-Scale Distributed Design
,” Ph.D. thesis, Stanford University, Stanford, CA.
4.
Kim
,
H. M.
,
Michelena
,
N. F.
,
Papalambros
,
P. Y.
, and
Jiang
,
T.
, 2003, “
Target Cascading in Optimal System Design
,”
ASME J. Mech. Des.
0161-8458,
125
(
3
), pp.
474
480
.
5.
Tosserams
,
S.
,
Etman
,
L. F. P.
, and
Rooda
,
J. E.
, 2007, “
An Augmented Lagrangian Decomposition Method for Quasiseparable Problems in MDO
,”
Struct. Multidiscip. Optim.
1615-147X,
34
(
3
), pp.
211
227
.
6.
Tosserams
,
S.
,
Etman
,
L. F. P.
, and
Rooda
,
J. E.
, 2008, “
Augmented Lagrangian Coordination for Distributed Optimal Design in MDO
,”
Int. J. Numer. Methods Eng.
0029-5981,
73
(
13
), pp.
1885
1910
.
7.
Bertsekas
,
D. P.
, 1999,
Nonlinear Programming
, 2nd ed.,
Athena Scientific
,
Belmont, MA
.
8.
Bertsekas
,
D. P.
, and
Tsitsiklis
,
J. N.
, 1997,
Parallel and Distributed Computation: Numerical Methods
,
Athena Scientific
,
Belmont, MA
.
9.
Montanari
,
U.
, 1974, “
Networks of Constraints: Fundamental Properties and Applications to Picture Processing
,”
Inf. Sci. (N.Y.)
0020-0255,
7
, pp.
95
132
.
10.
Tsang
,
E.
, 1993,
Foundations of Constraint Satisfaction
,
Academic
,
San Diego, CA
.
11.
Kusiak
,
A.
,
Wang
,
J.
, and
He
,
D. W.
, 1996, “
Negotiation in Constraint-Based Design
,”
ASME J. Mech. Des.
0161-8458,
118
, pp.
470
477
.
12.
Schmidt
,
L. C.
,
Shi
,
H.
, and
Kerkar
,
S.
, 2005, “
A Constraint Satisfaction Problem Approach Linking Function and Grammar-Based Design Generation to Assembly
,”
ASME J. Mech. Des.
0161-8458,
127
, pp.
196
205
.
13.
Hicks
,
B. J.
,
Medland
,
A. J.
, and
Mullineux
,
G.
, 2006, “
The Representation and Handling of Constraints for the Design, Analysis, and Optimization of High Speed Machinery
,”
Artif. Intell. Eng. Des. Anal. Manuf.
0890-0604,
20
, pp.
131
328
.
14.
Mackworth
,
A. K.
, 1977, “
Consistency in Networks of Relations
,”
Artif. Intell.
0004-3702,
8
(
1
), pp.
99
118
.
15.
Oxley
,
J.
, 2003, “
What Is a Matroid?
,”
Cubo Matemática Educacional
,
5
(
3
), pp.
179
218
.
16.
Michelena
,
N. F.
, and
Papalambros
,
P. Y.
, 1997, “
A Hypergraph Framework for Optimal Model-Based Decomposition of Design Problems
,”
Comput. Optim. Appl.
0926-6003,
8
(
2
), pp.
173
196
.
17.
Allison
,
J. T.
, and
Papalambros
,
P. Y.
, 2007, “
Optimal Partitioning and Coordination Decisions in System Design Using an Evolutionary Algorithm
,”
Proceedings of the Seventh World Conference on Structural and Multidisciplinary Optimization
, Seoul, South Korea, May 21–25.
18.
Allison
,
J. T.
, 2008, “
Optimal Partitioning and Coordination Decisions in Decomposition-Based Design Optimization
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
You do not currently have access to this content.