The reduction in the vibration and noise of gears is an important issue in mechanical devices such as vehicles and wind turbines. The characteristics of the vibration and noise of gears are markedly affected by deviations of the tooth flank form of micrometer order; therefore, strict quality control of the tooth flank form is required. The accuracy of the lead measurement for a gear-measuring instrument is usually evaluated using a helicoid artifact. However, it is difficult to manufacture it with high accuracy because the helix is a complicated geometrical form. To solve this problem, a method of evaluating a gear-measuring instrument using a wedge artifact, which includes a highly precise plane surface, has been proposed. In this research, to put the wedge artifact into practice, a design method of the wedge artifact is developed. In addition, the effects of the measuring condition and the setting error of the wedge artifact on the measurement result are investigated. The uncertainty for the evaluation method using a wedge artifact is assessed by a measurement experiment and simulation.

1.
Komori
,
M.
,
Kubo
,
A.
, and
Kawasaki
,
Y.
, 2000, “
Design Method of Vibrationally Optimum Tooth Flank Form for Involute Helical Gears With Scattering in Pressure Angle and Helix Angle Deviation
,”
Proceedings of the DETC2000 ASME Eighth International Power Transmission and Gearing Conference
, Baltimore, MD, Paper No. DETC2000/PTG-14423.
2.
Komori
,
M.
,
Kubo
,
A.
, and
Suzuki
,
Y.
, 2003, “
Simultaneous Optimization of Tooth Flank Form of Involute Helical Gears in Terms of Both Vibration and Load Carrying Capacity
,”
JSME (Japan Society of Mechanical Engineers) International Journal
1344-7653,
C46
(
4
), pp.
1572
1581
.
3.
Mohamad
,
E. N.
,
Komori
,
M.
,
Murakami
,
H.
,
Kubo
,
A.
, and
Fang
,
S.
, 2009, “
Analysis of General Characteristics of Transmission Error of Gears With Convex Modification of Tooth Flank Form Considering Elastic Deformation Under Load
,”
ASME J. Mech. Des.
0161-8458,
131
(
6
), p.
061015
.
4.
Cooper
,
C.
, 1999, “
Coordinate Measuring Machine and the Gear Industry
,”
Gear Technol.
0743-6858, November/December, pp.
34
39
.
5.
Okuyama
,
E.
,
Kiyono
,
S.
, and
Moritoki
,
H.
, 1994, “
Investigation of an Optical Noncontact Gear Geometry Measurement System: Measurement of Pitch Errors and Tooth Profiles
,”
Precis. Eng.
0141-6359,
16
, pp.
117
123
.
6.
Robinson
,
M. J.
,
Oakley
,
J. P.
, and
Cunningham
,
M. J.
, 1995, “
The Accuracy of Image Analysis Methods in Spur Gear Metrology
,”
Meas. Sci. Technol.
0957-0233,
6
(
7
), pp.
860
871
.
7.
Suh
,
S. H.
,
Lee
,
E. S.
,
Kim
,
H. C.
, and
Cho
,
J. H.
, 2002, “
Geometric Error Measurement of Spiral Bevel Gears Using a Virtual Gear Model for STEP-NC
,”
Int. J. Mach. Tools Manuf.
0890-6955,
42
(
3
), pp.
335
342
.
8.
Takeoka
,
F.
,
Komori
,
M.
,
Kubo
,
A.
,
Fujio
,
H.
,
Taniyama
,
S.
,
Ito
,
T.
,
Takatsuji
,
T.
,
Osawa
,
S.
, and
Sato
,
O.
, 2008, “
Design of Laser Interferometric Measuring Device of Involute Profile
,”
ASME J. Mech. Des.
0161-8458,
130
(
5
), p.
052602
.
9.
Takeoka
,
F.
,
Komori
,
M.
,
Kubo
,
A.
,
Fujio
,
H.
,
Ito
,
T.
,
Takatsuji
,
T.
,
Osawa
,
S.
,
Sato
,
O.
, and
Takeda
,
R.
, 2009, “
High Precision Measurement of Involute Artefact by Rolling Method and Comparison Between Measuring Instruments
,”
Meas. Sci. Technol.
0957-0233,
20
(
4
), p.
045105
.
10.
Goch
,
G.
, 2003, “
Gear Metrology
,”
CIRP Annals-Manufacturing Technology
,
52
(
2
), pp.
659
695
.
11.
Kondo
,
Y.
,
Sasajima
,
K.
,
Osawa
,
S.
,
Sato
,
O.
, and
Komori
,
M.
, 2009, “
Development of a Novel Artifact as a Reference for Gear Pitch Measuring Instruments
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
131
(
5
), p.
051016
.
12.
Kondo
,
Y.
,
Sasajima
,
K.
,
Osawa
,
S.
,
Sato
,
O.
, and
Komori
,
M.
, 2009, “
Traceability Strategy for Gear-Pitch-Measuring Instruments: Development and Calibration of a Multiball Artifact
,”
Meas. Sci. Technol.
0957-0233,
20
(
6
), p.
065101
.
13.
Haertig
,
F.
,
Keck
,
C.
,
Kniel
,
K.
,
Schwenke
,
H. I.
,
Waeldele
,
F.
, and
Wendt
,
K.
, 2005, “
A Novel Concept for High Accuracy Gear Calibration
,”
Gear Technol.
0743-6858,
22
(
3
), pp.
16
20
.
14.
Haertig
,
F.
,
Keck
,
C.
,
Kniel
,
K.
,
Schwenke
,
H. I.
,
Wendt
,
K.
, and
Waeldele
,
F.
, 2003, “
Development of a Novel Gear Measuring Device of High Accuracy
,”
Proceedings of the DECT’03 ASME 2003
, Chicago, IL, Vol.
22
, Paper No. PTG-48105.
15.
Beyer
,
W.
, 1996, “
Traceable Calibration of Master Gears at PTB
,” Technical Paper of American Gear Manufacturers Association, Alexandria, Paper No. 96FTM04.
16.
Beyer
,
W.
, and
Pahl
,
W.
, 1996, “
Advanced Strategies for the Traceable Calibration of Cylindrical Gears and Bevel Gears at PTB
,”
VDI-Ber.
0083-5560,
1230
, pp.
937
945
.
17.
Innocenti
,
C.
, 2007, “
Simple Techniques for Measuring the Base Helix Angle of Involute Gears
,”
Proceedings of the 12th IFToMM World Congress
, Besancon, France, Paper No. 406.
18.
Komori
,
M.
,
Li
,
H.
,
Takeoka
,
F.
,
Osawa
,
S.
,
Sato
,
O.
,
Kiten
,
T.
,
Shirasaki
,
D.
, and
Kondo
,
Y.
, 2009, “
Design and Error Analysis of Multiball Artifact Composed of Simple Features to Evaluate Pitch Measurement Accuracy
,”
ASME J. Mech. Des.
0161-8458,
131
(
4
), p.
041006
.
19.
Frazer
,
R. C.
,
Bicker
,
R.
,
Cox
,
B.
,
Harary
,
H.
, and
Haertig
,
F.
, 2004, “
An International Comparison of Involute Gear Profile and Helix Measurement
,”
Metrologia
0026-1394,
41
, pp.
12
16
.
20.
Och
,
R.
, 2006, “
History of Gear Measurement—Measuring Machines and Traceability 1900–2005
,” Gear Product News, Oct.
21.
Physikalisch-Technische Bundesanstalt
, 2008,
Gear Metrology in the PTB (Physikalisch-Technische Bundesanstalt Brochure)
,
Physikalisch-Technische Bundesanstalt
,
Braunschweig
.
22.
Kubo
,
A.
,
Kondo
,
K.
,
Takatsuji
,
T.
,
Komori
,
M.
,
Osawa
,
S.
, and
Naoi
,
K.
, 2006, “
Coming Japanese Industrial Standard Calibration System of Involute Form Checker
,”
Proceedings of the International Conference of Metrology
, Casablanca.
23.
Komori
,
M.
,
Takeoka
,
F.
,
Kubo
,
A.
,
Okamoto
,
K.
,
Osawa
,
S.
,
Sato
,
O.
, and
Takatsuji
,
T.
, 2009, “
Evaluation Method of Lead Measurement Accuracy of Gears Using a Wedge Artefact
,”
Meas. Sci. Technol.
0957-0233,
20
(
2
), p.
025109
.
24.
Takeoka
,
F.
,
Komori
,
M.
,
Takahashi
,
M.
,
Kubo
,
A.
,
Takatsuji
,
T.
,
Osawa
,
S.
, and
Sato
,
O.
, 2009, “
Gear Checker Analysis Using Virtual Gear Checker
,”
Meas. Sci. Technol.
0957-0233,
20
(
4
), p.
045104
.
25.
ISO
, 1995, “
Cylindrical Gears—ISO System of Accuracy—Part 1: Definitions and Allowable Values of Deviations Relevant to Corresponding Flanks of Gear Teeth
,” Paper No. 1328-1.
26.
BIPM
,
IEC
,
IFCC
,
ISO
,
IUPAC
,
IUPAP
, and
OIML
, 1993,
Guide to the Expression of Uncertainty in Measurement
,
ISO
,
Geneva, Switzerland
.
You do not currently have access to this content.