Reliability based design optimization has received increasing attention for satisfying high requirements on reliability and safety in structure design. However, in practical engineering design, there are both continuous and discrete design variables. Moreover, both aleatory uncertainty and epistemic uncertainty may associate with design variables. This paper proposes the formulation of random/fuzzy continuous/discrete variables design optimization (RFCDV-DO) and two different approaches for uncertainty analysis (probability/possibility analysis). A method named random/fuzzy sequential optimization and reliability assessment is proposed based on the idea of sequential optimization and reliability assessment to improve efficiency in solving RFCDV-DO problems. An engineering design problem is utilized to demonstrate the approaches and the efficiency of the proposed method.

1.
Agarwal
,
H.
,
Renaud
,
J. E.
,
Preston
,
E. L.
, and
Padmanabhan
,
D.
, 2004, “
Uncertainty Quantification Using Evidence Theory in Multidisciplinary Design Optimization
,”
Reliab. Eng. Syst. Saf.
0951-8320,
85
(
1–3
), pp.
281
294
.
2.
Du
,
L.
, and
Choi
,
K. K.
, 2008, “
An Inverse Analysis Method for Design Optimization With Both Statistical and Fuzzy Uncertainties
,”
Struct. Multidiscip. Optim.
,
37
, pp.
107
119
. 0951-8320
3.
Enevoldsen
,
I.
, and
Sorensen
,
J. D.
, 1994, “
Reliability-Based Optimization in Structural Engineering
,”
Struct. Safety
,
15
, pp.
169
196
. 0167-4730
4.
Yu
,
X.
,
Chang
,
K. H.
, and
Choi
,
K. K.
, 1998, “
Probabilistic Structural Durability Prediction
,”
AIAA J.
,
36
(
4
), pp.
628
637
. 0001-1452
5.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Park
,
Y. H.
, 2003, “
Hybrid Analysis Method for Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
0161-8458,
125
(
2
), pp.
221
232
.
6.
Youn
,
B. D.
, and
Choi
,
K. K.
, 2004, “
Selecting Probabilistic Approaches for Reliability-Based Design Optimization
,”
AIAA J.
0001-1452,
42
(
1
), pp.
124
131
.
7.
Youn
,
B. D.
, and
Choi
,
K. K.
, 2004, “
A New Response Surface Methodology for Reliability-Based Design Optimization (RBDO)
,”
Comput. Struct.
0045-7949,
82
(
2–3
), pp.
241
256
.
8.
Youn
,
B. D.
, and
Choi
,
K. K.
, 2005, “
Enriched Performance Measure Approach for Reliability-Based Design Optimization
,”
AIAA J.
,
43
(
4
), pp.
874
884
. 0001-1452
9.
Du
,
X.
, and
Chen
,
W.
, 2004, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
0161-8458,
126
(
2
), pp.
225
233
.
10.
Wu
,
Y. T.
,
Shin
,
Y.
,
Sues
,
R. H.
, and
Cesare
,
M.
, 2001, “
Safety-Factor Based Approach for Probability-Based Design Optimization
,”
42nd AIAA/ASME/ASC /AHS/ASC SDM Conference and Exhibit
, Seattle, WA, April, Paper No. AIAA-2001-1522.
11.
Chen
,
X.
,
Hasselman
,
T. K.
, and
Neill
,
D. J.
, 1997, “
Reliability-Based Structural Design Optimization for Practical Applications
,”
38th AIAA SDM Conference
, April, Paper No. AIAA-97-1403.
12.
Tu
,
J.
, and
Choi
,
K. K.
, 1999, “
A New Study on Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
0161-8458,
121
(
4
), pp.
557
564
.
13.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Du
,
L.
, 2005, “
Adaptive Probability Analysis Using an Enhanced Hybrid Mean Value Method
,”
Struct. Multidiscip. Optim.
1615-147X,
29
(
2
), pp.
134
148
.
14.
Youn
,
B. D.
, 2007, “
Adaptive-Loop Method for Non-deterministic Design Optimization
,”
Proc. Inst. Mech. Eng. Part O: J Risk Reliab.
1748-006X,
221
(
2
), pp.
107
116
.
15.
Du
,
L.
,
Choi
,
K. K.
, and
Youn
,
B. D.
, 2006, “
Inverse Possibility Analysis Method for Possibility Based Design Optimization
,”
AIAA J.
0001-1452,
44
(
11
), pp.
2682
2690
.
16.
Choi
,
K. K.
,
Youn
,
B. D.
, and
Du
,
L.
, 2005, “
Integration of Reliability- and Possibility-Based Design Optimization Using Performance Measure Approach
,”
SAE Trans.
0096-736X,
114
(
6
), pp.
247
256
.
17.
Mourelatos
,
Z. P.
, and
Zhou
,
J.
, 2005, “
Reliability Estimation and Design With Insufficient Data Based on Possibility Theory
,”
AIAA J.
,
43
(
8
), pp.
1696
1705
. 0001-1452
18.
Mourelatos
,
Z. P.
, and
Zhou
,
J.
, 2006, “
A Design Optimization Method Using Evidence Theory
,”
ASME J. Mech. Des.
0161-8458,
128
(
4
), pp.
901
908
.
19.
Gunawan
,
S.
,
Kokkolaras
,
M.
,
Papalambros
,
P. Y.
, and
Mourelatos
,
Z. P.
, 2006, “
Design Optimization and Reliability Estimation With Incomplete Uncertainty Information
,”
Proceedings of the Society of Automotive Engineers World Congress
, Detroit, MI, Apr. 3–6.
20.
Liu
,
B. D.
, and
Peng
,
J.
, 2005,
A Course in Uncertainty Theory
,
Tsinghua Publishing House
,
Beijing
.
21.
Dubois
,
D.
, and
Prade
,
H.
, 1983, “
Unfair Coins and Necessary Measures: A Possible Interpretation of Histograms
,”
Fuzzy Sets Syst.
,
10
(
1–3
), pp.
15
20
. 0165-0114
22.
Rosenblatt
,
M.
, 1952, “
Remarks on a Multivariate Transformation
,”
Ann. Math. Stat.
0003-4851,
23
(
3
), pp.
470
472
.
23.
Yu
,
J.
, and
Zhou
,
J.
, 1997,
Program Library of Optimization Methodology OPB-2:Principle and Application
,
Huazhong University of Science and Technology Press
,
Wuhan, China
.
24.
Lewis
,
K.
, and
Mistree
,
F.
, 1997, “
Collaborative, Sequential, and Isolated Decisions in Design
,”
Proceedings of ASME 1997 Design Engineering Technical Conferences
, Sacramento, CA, Sept. 14–17.
You do not currently have access to this content.