This paper focuses on the synthesis of an independent suspension that can guide the wheel to track a straight line when moving up (jounce) and down (rebound). With displacement subgroups, it first synthesizes a rigid body guidance mechanism and verifies the result through screw theory. To simplify and optimize the loads of each kinematic chain of the knuckle, it investigates the static equations and ultimately synthesizes a symmetric redundant-constraint suspension structure, which could not only eliminate the shambling shocks induced by the jumping of wheels but also decrease the abrasion of tires. Theoretically, only one pair of noncoplanar kinematic chains is necessary to realize straight line guidance. However, a second pair of noncoplanar kinematic chains is particularly utilized to improve the load status of the links. Because of the redundant constraints induced by the suspension structures, the whole weight can be significantly reduced compared with the initial one. ADAMS simulations with a set of real parameters indicate that the rear suspension mechanism proposed in this paper can guide the wheel to follow a rectilinear locus during jounce and rebound. Therefore, this kind of independent suspension can improve the ride and handling properties of advanced vehicles.

1.
Dai
,
J. S.
,
Huang
,
Z.
, and
Lipkin
,
H.
, 2006, “
Mobility of Overconstrained Parallel Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
128
(
1
), pp.
220
229
.
2.
Raghavan
,
M.
, 1996, “
Number and Dimensional Synthesis of Independent Suspension Mechanisms
,”
Mech. Mach. Theory
0094-114X,
31
(
8
), pp.
1141
1153
.
3.
Knapczyk
,
J.
, and
Maniowski
,
M.
, 2006, “
Stiffness Synthesis of a Five-Rod Suspension for Given Load-Displacement Characteristics
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
0954-4070,
220
(
7
), pp.
879
889
.
4.
Tsampardoukas
,
G.
,
Stammers
,
C. W.
, and
Guglielmino
,
E.
, 2008, “
Semi-Active Control of a Passenger Vehicle for Improved Ride and Handling
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
0954-4070,
222
(
3
), pp.
325
352
.
5.
Sung
,
K. -G.
,
Han
,
Y. -M. J.
,
Sohn
,
J. W.
, and
Choi
,
S. -B.
, 2008, “
Road Test Evaluation of Vibration Control Performance of Vehicle Suspension Featuring Electrorheological Shock Absorbers
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
0954-4070,
222
(
5
), pp.
685
698
.
6.
Suh
,
C. H.
, 1989, “
Synthesis and Analysis of Suspension Mechanisms With Use of Displacement Matrices
,” SAE Paper No. 890098.
7.
Raghavan
,
M.
, 2005, “
Suspension Synthesis for N:1 Roll Center Motion
,”
ASME J. Mech. Des.
0161-8458,
127
(
4
), pp.
673
678
.
8.
Simionescu
,
P. A.
, and
Beale
,
D.
, 2002, “
Synthesis and Analysis of the Five-Link Rear Suspension System Used in Automobiles
,”
Mech. Mach. Theory
0094-114X,
37
(
9
), pp.
815
832
.
9.
Murakami
,
T.
,
Uno
,
T.
,
Iwasaki
,
H.
, and
Noguchi
,
H.
, “
Development of a New Multi-Link Front Suspension
,” SAE Paper No. 890179.
10.
Knapczyk
,
J.
, and
Dzierzek
,
S.
, 1995, “
Displacement and Force Analysis of Five-Rod Suspension With Flexible Joints
,”
ASME J. Mech. Des.
0161-8458,
117
(
4
), pp.
532
538
.
11.
Kasahara
,
T.
,
Morioka
,
N.
,
Satou
,
M.
,
Yagi
,
T.
, and
Muraoka
,
K.
, 2000, “
Development of a New Multi-Link Suspension
,” SAE Paper No. 2000-01-0092.
12.
Knable
,
J. J.
, and
Nagreski
,
D. L.
, 1999, “
Design of a Multilink Independent Front Suspension for Class A Motor Homes
,” SAE Paper No. 1999-01-3731.
13.
Raghavan
,
M.
, 2004, “
Suspension Design for Linear Toe Curves: A Case Study in Mechanism Synthesis
,”
ASME J. Mech. Des.
0161-8458,
126
(
2
), pp.
278
282
.
14.
Kempe
,
A. B.
, 1877,
How to Draw a Straight Line
, cited by D. W. Henderson and D. Taimina,
Macmillan
,
London
, http://kmoddl.library.cornell.edu/tutorials/11/http://kmoddl.library.cornell.edu/tutorials/11/
16.
Zhao
,
J. -S.
,
Chu
,
F.
, and
Feng
,
Z. -J.
, 2008, “
Synthesis of Rectilinear Motion Generating Spatial Mechanism With Application to Automotive Suspension
,”
ASME J. Mech. Des.
0161-8458,
130
(
6
), p.
065001
.
18.
Arsenault
,
M.
, and
Boudreau
,
R.
, 2006, “
Synthesis of Planar Parallel Mechanisms While Considering Workspace, Dexterity, Stiffness and Singularity Avoidance
,”
ASME J. Mech. Des.
0161-8458,
128
(
1
), pp.
69
78
.
19.
Cervantes-Sánchez
,
J. J.
Medellín-Castillo
,
H. I.
,
Rico-Martínez
,
J. M.
, and
González-Galván
,
E. J.
, 2009, “
Some Improvements on the Exact Kinematic Synthesis of Spherical 4R Function Generators
,”
Mech. Mach. Theory
0094-114X,
44
(
1
), pp.
103
121
.
20.
Liu
,
T. S.
, and
Chou
,
C. C.
, 1993, “
Type Synthesis of Vehicle Planar Suspension Mechanism Using Graph Theory
,”
ASME J. Mech. Des.
0161-8458,
115
(
3
), pp.
652
657
.
21.
Kang
,
H. Y.
, and
Suh
,
C. H.
, 1994, “
Synthesis and Analysis of Spherical-Cylindrical (SC) Link in the McPherson Strut Suspension Mechanism
,”
ASME J. Mech. Des.
0161-8458,
116
(
2
), pp.
599
606
.
22.
Rico
,
J. M.
,
Cervantes-Sánchez
,
J. J.
,
Tadeo-Chávez
,
A.
,
Pérez-Soto
,
G. I.
, and
Rocha-Chavarría
,
J.
, 2008, “
New Considerations on the Theory of Type Synthesis of Fully Parallel Platforms
,”
ASME J. Mech. Des.
0161-8458,
130
(
11
), p.
112302
.
23.
Maclaurin
,
E. B.
, 2003, “
Compound Strut and Planar Six-Bar Linkage Suspension Systems
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
0954-4070,
217
(
3
), pp.
215
219
.
24.
Norton
,
R. L.
, 2001,
Design of Machinery—An Introduction to the Synthesis and Analysis of Mechanisms and Machines
,
McGraw-Hill
,
New York
.
25.
Rico
,
J. M.
, and
Duffy
,
J.
, 1990, “
A Representation of the Euclidean Group by Spin Groups, and Spatial Kinematics Mappings
,”
ASME J. Mech. Des.
0161-8458,
112
(
1
), pp.
42
49
.
26.
Hall
,
M.
, 1959,
The Theory of Groups
,
Macmillan
,
New York
.
27.
Karger
,
A.
and
Novak
,
J.
, 1985,
Space Kinematics and Lie Groups
,
Gordon and Breach
,
New York
.
28.
Lee
,
C. -C.
, and
Hervé
,
J. M.
, 2006, “
Translational Parallel Manipulators With Doubly Planar Limbs
,”
Mech. Mach. Theory
0094-114X,
41
(
4
), pp.
433
455
.
29.
Murray
,
R. M.
,
Li
,
Z.
, and
Sastry
,
S. S.
, 1994,
A Mathematical Introduction to Robotic Manipulation
,
CRC
,
Boca Raton, FL
.
30.
Dai
,
J. S.
, 2006, “
An Historical Review of the Theoretical Development of Rigid Body Displacements From Rodrigues Parameters to the Finite Twist
,”
Mech. Mach. Theory
0094-114X,
41
(
1
), pp.
41
52
.
31.
Bottema
,
O.
, and
Roth
,
B.
, 1979,
Theoretical Kinematics
,
North-Holland
,
Amsterdam
.
32.
Selig
,
J. M.
, 1999,
Geometrical Foundations of Robotics
,
World Scientific
,
Singapore
.
33.
Shigley
,
J. E.
, and
Uicher
,
J. J.
, 1980,
Theory of Machines and Mechanisms
,
McGraw-Hill
,
New York
.
34.
Waldron
,
K. J.
, and
Kinzel
,
G. L.
, 1999,
Kinematics, Dynamics, and Design of Machinery
,
Wiley
,
New York
.
35.
Zhao
,
J. -S.
,
Feng
,
Z. -J.
,
Wang
,
L. -P.
, and
Dong
,
J. -X.
, 2006, “
The Free Mobility of a Parallel Manipulator
,”
Robotica
0263-5747,
24
(
5
), pp.
635
641
.
36.
Ball
,
R. S.
, 1900,
A Treatise on the Theory of Screws
,
Cambridge University
,
Cambridge, England
.
37.
Hunt
,
K. H.
, 1978,
Kinematic Geometry of Mechanisms
,
Oxford University
,
Oxford
.
38.
Kumar
,
V.
, 1992, “
Instantaneous Kinematics of Parallel-Chain Robotic Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
114
, pp.
349
358
.
39.
Meriam
,
J. L.
, and
Kraige
,
L. G.
, 1986,
Engineering Mechanics
,
Wiley
,
New York
.
40.
Kelley
,
C. T.
, 1995,
Iterative Methods for Linear and Nonlinear Equations
,
North Carolina State University, Society for Industrial and Applied Mathematics
,
Philadelphia
.
You do not currently have access to this content.