The application of the mechanical energy conservation principle sets a dynamical limit to the performances of compliant lever mechanisms endowed with a positive definite strain energy. The limit applies to every linear compliant lever and is given as an upper bound on the product between the static effective gain of the device and its bandwidth. The relevant parameters of this relation are determined only by the structures surrounding the device and not by its design. This result is obtained on the basis of a linear two-port model, with coefficients determined by the static elastic constants of the device. The model and the dynamical limit are validated by multiobjective optimization analysis interfaced with a finite element model of a practical mechanism.

1.
Howell
,
L. L.
, 2001,
Compliant Mechanisms
,
Wiley
,
New York
.
2.
Paik
,
H. J.
,
Harry
,
G. M.
, and
Stevenson
,
T.
, 1996, “
Wideband Resonant Lever Transducer for Massive Spherical Gravitational Wave Detectors
,”
Proceedings of the Seventh Marcel Grossmann Meeting on General Relativity
,
Stanford
,
R. T.
Jantzen
,
G.
Mac Kreiser
, and
R.
Ruffini
, eds.,
World Scientific
,
Singapore
, pp.
1483
1485
.
3.
Bonaldi
,
M.
,
Cerdonio
,
M.
,
Conti
,
L.
,
Falferi
,
P.
,
Leaci
,
P.
,
Odorizzi
,
S.
,
Prodi
,
G. A.
,
Saraceni
,
M.
,
Serra
,
E.
, and
Zendri
,
J.-P.
, 2006, “
Principles of Wide Bandwidth Acoustic Detectors and the Single-Mass Dual Detector
,”
Phys. Rev. D
0556-2821,
74
, p.
022003
.
4.
Lobontiu
,
N.
, 2002,
Compliant Mechanisms: Design of Flexure Hinges
,
CRC
,
Boca Raton, FL
.
5.
Hsiao
,
F.
, and
T. Lin
,
T.
, 2001, “
Analysis of a Novel Flexure Hinge With Three Degrees of Freedom
,”
Rev. Sci. Instrum.
0034-6748,
72
, pp.
1565
1573
.
6.
Frecker
,
M.
, 2003, “
Recent Advances in Optimization of Smart Structures and Actuators
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
14
, pp.
207
216
.
7.
Yin
,
L.
, and
Ananthasuresh
,
G. K.
, 2002, “
A Novel Topology Design Scheme for the Multi-Physics Problem of Electro-Thermally Actuated Compliant Micromechanisms,“
Sens. Actuators, A
0924-4247,
97–98
, pp.
599
609
.
8.
Kim
,
J. H.
,
Kim
,
S. H.
, and
Kwak
,
Y. K.
, 2003, “
Development of a Piezoelectric Actuator Using a Three-Dimensional Bridge-Type Hinge Mechanism
,”
Rev. Sci. Instrum.
0034-6748,
74
, pp.
2918
2924
.
9.
Su
,
S. X.-P.
, and
Yang
,
H. S.
, 2002, “
Analytical Modeling and FEM Simulations of Single-Stage Microleverage Mechanism
,”
Int. J. Mech. Sci.
0020-7403,
44
, pp.
2217
2238
.
10.
Yu
,
Y.-Q.
,
Howell
,
L. L.
,
Lusk
,
C.
,
Yue
,
Y.
, and
He
,
M.-G.
, 2005, “
Dynamic Modeling of Compliant Mechanisms Based on the Pseudo-Rigid-Body Model
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
760
765
.
11.
Lau
,
G. K.
,
Du
,
H.
,
Guo
,
N.
, and
Lim
,
M. K.
, 2000, “
Topology Optimization Systematic Design of Displacement-Amplifying Mechanisms for Piezoelectric Stacked Actuators Using Topology Optimization
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
11
, pp.
685
695
.
12.
Abdalla
,
M.
,
Frecker
,
M.
,
Gürdal
,
Z.
,
Johnson
,
T.
, and
Lindner
,
D. K.
, 2005, “
Design of a Piezoelectric Actuator and Compliant Mechanism Combination for Maximum Energy Efficiency
,”
Smart Mater. Struct.
0964-1726,
14
, pp.
1421
1430
.
13.
Maddisetty
,
H.
, and
Frecker
,
M.
, 2004, “
Dynamic Topology Optimization of Compliant Mechanisms and Piezoceramic Actuators
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
975
983
.
14.
Prechtl
,
E. F.
, and
Hall
,
S. R.
, 1999, “
Design of a High Efficiency, Large Stroke, Electromechanical Actuator
,”
Smart Mater. Struct.
0964-1726,
8
, pp.
13
30
.
15.
Sass
,
L.
,
McPhee
,
J.
,
Schmitke
,
C.
,
Fisette
,
P.
, and
Grenier
,
D.
, 2004, “
A Comparison of Different Methods for Modelling Electromechanical Multibody Systems
,”
Multibody Syst. Dyn.
1384-5640,
12
, pp.
209
250
.
16.
Meirovitch
,
L.
, 1996,
Principles and Techniques of Vibrations
,
Prentice-Hall
,
London
.
17.
Carter
,
G. W.
, and
Richardson
,
A.
, 1972,
Techniques of Circuit Analysis
,
Cambridge University Press
,
London
.
18.
Muravskii
,
G. B.
, 2004, “
On Frequency Independent Damping
,”
J. Sound Vib.
0022-460X,
274
, pp.
653
668
.
19.
Sadd
,
M. H.
, 2005,
Elasticity: Theory, Applications, and Numerics
,
Elsevier
,
Oxford
.
20.
Meirovitch
,
L.
, 1970,
Methods of Analytical Dynamics
,
McGraw-Hill
,
New York
.
21.
Bode
,
H. W.
, 1945,
Network Analysis and Feedback Amplifier Design
,
Van Nostrand
,
New York
.
22.
Youla
,
D. C.
, 1964, “
A New Theory of Broad-band Matching
,”
IEEE Trans. Circuit Theory
0018-9324,
CT-11
, pp.
30
50
.
23.
Carlin
,
H. J.
, 1977, “
A New Approach to Gain-Bandwidth Problems
,”
IEEE Trans. Circuits Syst.
0098-4094,
CAS-24
, pp.
170
175
.
24.
Deb
,
K.
, 2001,
Multi-Objective Optimization Using Evolutionary Algorithms
,
Wiley
,
Chichester
.
25.
Duffy
,
W.
, and
Dalal
,
F.
, 1996, “
Effects of Explosive Bonds on Acoustic Loss of Aluminum-Magnesium Alloys
,”
Cryogenics
0011-2275,
36
, pp.
559
563
.
You do not currently have access to this content.