The importance of energy efficiency of a robotic manipulator is clearly evident when the manipulator has to use on-board power. With miniature machines, this issue is even more important since the size and the weight guides the performance of a design. In this paper, a design methodology is proposed which may allow a robot to follow desired trajectories approximately without actuator inputs. Actuator inputs are used to further modify the trajectories. The design philosophy has the following key elements: (i) the inertia matrix of the device is suitably altered using mass distribution; (ii) compliant elements are introduced to take away the gravity terms; and (iii) additional springs are used to create certain periodic gait motion. This design philosophy is applied on a two dof leg executing a swing motion. It is found that the passive motion of the designed leg is close to the desired trajectories but is not exact. Actuators are added to get the desired response fully. Power input for two legs with and without this design philosophy, are then compared.

1.
Moll
,
M.
, and
Kavaraki
,
L.
, 2004, “
Path Planning for Minimal Energy Curves of Constant Length
,”
Proceedings of IEEE/ICRA International Conference on Robotics and Automation
, New Orleans, LA, April.
2.
Mayorga
,
R.
,
Ma
,
K. S.
,
Wong
,
A. K. C.
, and
Ressa
,
B.
, 1993, “
A Fast Approach for the Path Planning of Telerobotic Manipulators
,”
Proceedings of IEEE/ICRA International Conference on Robotics and Automation
, Atlanta, GA, May.
3.
Lee
,
S. J.
, and
Yamakawa
,
H.
, 1998, “
Study of Minimum Energy Collision-Free Trajectory Planning for Rigid Manipulators
,” JSME Internatinal Journal on Mechanical Systems, Machine Elements and Manufacturing.
4.
Ono
,
K.
, and
Liu
,
R.
, 2002, “
Optimal Biped Walking Locomotion Solved by Trajectory Planning Method
,”
J. Dyn. Syst., Meas., Control
0022-0434,
124
, pp.
554
565
.
5.
Silva
,
F. M.
, and
Machado
,
J. A. Tenreiro
, 1998, “
Dynamic Performance of Biped Locomotion Systems
,”
International Workshop on Advanced Motion Control
, AMC, pp.
451
456
.
6.
McGeer
,
T.
, 1990, “
Passive Dynamic Walking
,”
Int. J. Robot. Res.
0278-3649,
9
, pp.
68
82
.
7.
Garcia
,
M.
,
Chatterjee
,
A.
,
Ruina
,
A.
, and
Coleman
,
M.
, 1998, “
The Simplest Walking Model: Stability, Complexity, and Scaling
,”
ASME J. Biomech. Eng.
0148-0731,
120
, pp.
281
288
.
8.
Schiehlen
,
W.
, 2005, “
Energy-Optimal Design of Walking Machines
,”
Multibody Syst. Dyn.
1384-5640,
13
(
1
), pp.
129
141
.
9.
Hirai
,
K.
,
Hirose
,
M.
,
Haikawa
,
Y.
, and
Takenaka
,
T.
, 1998, “
The Development of the Honda Humanoid Robot
,”
IEEE International Conference on Robotics and Automation Proceedings
, Leuven, Belgium, May, pp.
1321
1326
.
10.
Collins
,
S. H.
,
Wisse
,
M.
, and
Ruina
,
A.
, 2001, “
A Three-Dimensional Passive-Dynamic Walking Robot with Two Legs and Knees
,”
Int. J. Robot. Res.
0278-3649,
7
, pp.
607
615
.
11.
Agrawal
.
S. K.
, and
Erdman
,
A. G.
, 2005, “
Biomedical Assist Devices and New Biomimetic Machines: A Short Perspective
,”
J. Mech. Des.
1050-0472,
127
(
4
), pp.
799
801
.
12.
Agrawal
,
S.
, and
Fattah
,
A.
, 2004, “
Gravity-Balancing of Spatial Robotic Manipulators
,”
Mech. Mach. Theory
0094-114X,
39
(
12
), pp.
1331
1344
.
13.
Fattah
,
A.
, and
Agrawal
,
S. K.
, 2005, “
On the Design of a Passive Orthosis to Gravity Balance Human Legs
,”
J. Mech. Des.
1050-0472,
127
(
4
), pp.
802
808
.
14.
Herder
,
J. L.
, and
Tuijthof
,
G. J. M.
, 2000, “
Two Spatial Gravity Equilibrators
,”
Proceedings, ASME Design Engineering Technical Conferences
, Atlanta, GA, September, MECH-14120.
15.
Rahman
,
T.
,
Ramanathan
,
R.
,
Seliktar
,
R.
, and
Harwin
,
W.
, 1995, “
A Simple Technique to Passively Gravity-Balance Articulated Mechanisms
,”
J. Mech. Des.
1050-0472,
117
(
4
), pp.
655
658
.
16.
Banala
,
S.
,
Agrawal
,
S. K.
,
Fattah
,
A.
,
Rudolph
,
K.
, and
Scholz
,
J. P.
, 2004, “
A Gravity Balancing Leg Orthosis for Robotic Rehabilitation
,”
IEEE International Conference on Robotics and Automation Proceedings
, New Orleans, LA, April.
17.
Streit
,
D. A.
,
Chung
,
H.
, and
Gilmore
,
B. J.
, 1991, “
Perfect Equilibrators for Rigid Body Spatial Rotations about a Hooke’s Joint
,”
J. Mech. Des.
1050-0472,
113
(
4
), pp.
500
507
.
18.
Herder
,
J. L.
, 1998, “
Design of Spring Force Compensation Systems
,”
Mech. Mach. Theory
0094-114X,
33
(
1-2
), pp.
151
161
.
19.
Streit
,
D. A.
, and
Shin
,
E.
, 1993, “
Equilibrators for Planar Linkages
,”
J. Mech. Des.
1050-0472,
115
(
3
), pp.
604
611
.
You do not currently have access to this content.