The computerized design, generation, and tooth contact analysis of a Klingelnberg-type cylindrical worm gear drive is considered wherein localization of contact is obtained by application of an oversized hob and mismatch geometries of hob and worm of the drive. A computerized approach for the determination of contacting surfaces and the investigation of their meshing and contact by tooth contact analysis is presented. The developed theory results in an improvement of bearing contact and reduction of sensitivity to misalignment. The theory is illustrated with numerical examples and may be applied for other types of cylindrical worm gear drives.

1.
Colbourne
,
J. R.
, 1989, “
The Use of Oversize Hobs to Cut Worm Gears
,” AGMA Paper 89FTM8.
2.
De Donno
,
M.
, and
Litvin
,
F. L.
, 1999, “
Computerized Design and Generation of Worm Gear Drives with Stable Bearing Contact and Low Transmission Errors
,”
ASME J. Mech. Des.
1050-0472,
121
, pp.
573
578
.
3.
Dooner
,
D. B.
, and
Seireg
,
A. A.
, 1995,
The Kinematic Geometry of Gearing
,
Wiley
New York
.
4.
Fang
,
H.-S.
, and
Tsay
,
C.-B
, 2000, “
Mathematical Model and Bearing Contacts of the ZN-Type Worm Gear Set by Oversize Hob Cutters
,”
Mech. Mach. Theory
0094-114X,
35
, pp.
1689
1708
.
5.
Kolchin
,
N. I.
, 1949,
Analytical Computation of Planar and Spatial Gearing
,
Mashgiz
,
Leningrad
, (in Russian).
6.
Kolchin
,
N. I.
, and
Litvin
,
F. L.
, 1952,
Methods of Computation for Manufacture and Measurements of Toothed Objects
,
Mashgiz
,
Leningrad
, (in Russian).
7.
Lagutin
,
S. A.
, 1998, “
Synthesis and Application of General Type Worm-Gears with Localized Contact
,” Preprint IOCOMO-06–1998, Dresden.
8.
Litvin
,
F. L.
, 1997, Development of Gear Technology and Theory of Gearing, NASA Reference Publication 1406.
9.
Litvin
,
F. L.
, and
Fuentes
,
A.
, 2004,
Gear Geometry and Applied Theory
, 2nd ed.,
Cambridge University Press
,
Cambridge, England
(1st ed. by
Litvin
,
F. L.
, 1994,
Prentice-Hall
,
Englewood Cliffs, NJ
).
10.
Litvin
,
F. L.
, and
De Donno
,
M.
, 1999, “
Computerized Design and Generation of Modified Spiroid Worm-Gear Drive With Low Transmission Errors and Stabilized Bearing Contact
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
162
, pp.
187
201
.
11.
Litvin
,
F. L.
,
Fuentes
,
A.
,
Demenego
,
A.
,
Vecchiato
,
D.
, and
Fan
,
Q.
, 2001, “
New Developments in the Design and Generation of Gear Drives
,” Mechanical Enginnering Science, Part C,
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
215
(
C7
), pp.
747
758
.
12.
Litvin
,
F. L.
,
Fuentes
,
A.
, and
Hayasaka
,
K.
, 2006, “
Design, Manufacture, Stress Analysis, and Experimental Tests of Low-Noise High Endurance Spiral Bevel Gears
,”
Mech. Mach. Theory
0094-114X,
41
, pp.
83
118
.
13.
Litvin
,
F. L.
,
Vecchiato
,
D.
,
Gurovich
,
E.
,
Fuentes
,
A.
,
Gonzalez-Perez
,
I.
,
Hayasaka
,
K.
, and
Yukishima
,
K.
, 2005, “
Computerized Developments in Design, Generation, Simulation of Meshing, and Stress Analysis
,”
Meccanica
0025-6455,
40
, pp.
291
324
.
14.
Seol
,
I. H.
, and
Litvin
,
F. L.
, 1996, “
Computerized Design, Generation and Simulation of Meshing and Contact of Modified Involute, Klingelnberg and Flender Type Worm-Gear Drives
,”
ASME J. Mech. Des.
1050-0472,
118
, pp.
551
555
.
15.
Seol
,
I. H.
, 2000, “
The Design, Generation, and Simulation of Meshing of Worm-Gear Drive With Longitudinally Localized Contacts
,”
ASME J. Mech. Des.
1050-0472
122
, pp.
201
206
.
16.
Sheveleva
,
G. I.
, 1999,
Theory of Formation and Contact of Moving Bodies
,
Stankin
,
Moscow
(in Russian).
17.
Simon
,
V.
, 2003, “
Load Distribution in Cylindrical Worm Gears
,”
ASME J. Mech. Des.
1050-0472,
125
, pp.
356
364
.
18.
Simon
,
V.
, 2005, “
Computer Aided Loaded Tooth Contact Analysis in Cylindrical Worm Gears
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
973
981
.
19.
Townsend
,
D. P.
, 1991,
Dudley’s Gear Handbook
, 2nd ed.,
McGraw-Hill
,
New York
.
20.
Zalgaller
,
V. A.
, 1975,
Theory of Envelopes
,
Nauka
,
Moscow
(in Russian).
21.
Zalgaller
,
V. A.
, and
Litvin
,
F. L.
, 1977, “
Sufficient Condition of Existence of Envelope to Contact Lines and Edge of Regression on the Surface of the Envelope to the Parametric Family of Surfaces Represented in Parametric Form
,”
Proc. Univ.: Mathematics
(in Russian)
178
(
3
), pp.
20
23
.
22.
Zanzi
,
C.
, and
Pedrero
,
J. I.
, 2005, “
Application of Modified Geometry of Face Gear Drive
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
194
, pp.
3047
3066
.
You do not currently have access to this content.