Modal disparity and a topology optimization problem seeking to maximize this disparity are introduced, with the goal of developing a new methodology for control of vibration in flexible structures. Modal disparity is generated in a structure by the application of external forces that vary the stiffness of the structure. When the forces are switched on and off and, as a result, the structure is switched between two stiffness states, modal disparity results in vibration energy being transferred from a set of not-controlled modes to a set of controlled modes. This allows the vibration of the structure to be completely attenuated by removing energy only from a small set of controlled modes. A topology optimization problem determines the best locations for application of the external forces. Simulation results are presented to demonstrate control of vibration exploiting modal disparity in two three-dimensional (3D) frame structures.

1.
Balas
,
M. J.
, 1978, “
Feedback Control of Flexible Systems
,”
IEEE Trans. Autom. Control
0018-9286,
AC-23
(
4
), pp.
673
679
.
2.
Balas
,
M. J.
, 1978, “
Modal Control of Certain Flexible Dynamic Systems
,”
SIAM J. Control Optim.
0363-0129,
16
(
3
), pp.
450
462
.
3.
Dorn
,
W.
,
Gomory
,
R.
, and
Greenberg
,
M.
, 1964, “
Automatic Design of Optimal Structures
,”
J. Mec.
0021-7832,
3
, pp.
25
52
.
4.
Pedersen
,
N.
, 2001, “
On Topology Optimization of Plates with Prestress
,”
Int. J. Numer. Methods Eng.
0029-5981,
51
, pp.
225
239
.
5.
Lyu
,
N.
, and
Saitou
,
K.
, 2005, “
Topology Optimization of Multicomponent Beam Structure Via Decomposition-Based Assembly Synthesis
,”
ASME J. Mech. Des.
1050-0472,
127
(
2
), pp.
170
183
.
6.
Maddisetty
,
H.
, and
Frecker
,
M.
, 2004, “
Dynamic Topology Optimization of Compliant Mechanisms and Piezoceramic Actuators
,”
ASME J. Mech. Des.
1050-0472,
126
(
6
), pp.
975
983
.
7.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
, 2001, “
Topology Synthesis of Compliant Mechanisms for Nonlinear Force-Deflection and Curved Path Specifications
,”
ASME J. Mech. Des.
1050-0472,
123
(
1
), pp.
33
42
.
8.
Logan
,
D.
, 2002,
A First Course in the Finite Element Method
, 3rd ed.,
Brooks/Cole
,
Pacific Grove, CA
.
9.
Crisfield
,
M. A.
, 1991,
Non-linear finite element analysis of solids and structures, Volume 1 essentials
,
Wiley
,
Essex England
.
10.
Lobontiu
,
N.
, and
Garcia
,
E.
, 2005, “
Circular-Hinge Line Element for Finite Element Analysis of Compliant Mechanisms
,”
ASME J. Mech. Des.
1050-0472,
127
(
4
), pp.
766
778
.
11.
Guerinot
,
A. E.
,
Magleby
,
S. P.
,
Howell
,
L. L.
, and
Todd
,
R. H.
, 2005, “
Complaint Joint Design Principles for High Compressive Load Situations
,”
ASME J. Mech. Des.
1050-0472,
127
(
4
), pp.
774
781
.
12.
Zettl
,
B.
,
Szyszkowski
,
W.
, and
Zhang
,
C.
, 2005, “
On Systematic Errors of 2D Finite Element Modeling of Right Circular Planar Flexure Hinges
,”
ASME J. Mech. Des.
1050-0472,
127
(
4
), pp.
782
787
.
13.
Trease
,
B. P.
,
Moon
,
Y. M.
, and
Kota
,
S.
, 2005, “
Design of Large-Displacement Compliant Joints
,”
ASME J. Mech. Des.
1050-0472 ,
127
(
4
), pp.
788
798
.
14.
Rozvany
,
G. I. N.
,
Zhou
,
M.
, and
Birker
,
T.
, 1992, “
Generalized Shape Optimization Without Homogenization
,”
Struct. Optim.
0934-4373,
4
, pp.
250
254
.
15.
Mlejnik
,
H. P.
, and
Schirrmacher
,
R.
, 1993, “
An Engineering Approach to Optimal Material Distribution and Shape Finding
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
106
, pp.
1
26
.
16.
Svanberg
,
K.
, 1987, “
The Method of Moving Asymptotes
,”
Int. J. Numer. Methods Eng.
0029-5981,
24
, pp.
359
373
.
You do not currently have access to this content.