The performance of a gear set is strongly influenced by the manufacturing and assembly quality. Therefore, detailed analyses at the design stage, where the effects of expected assembly and manufacturing errors can be simulated, are crucial. At an early design stage, when contact conditions are addressed, the widely used finite element method (FEM) may still result in unwanted computing time. The paper presents an Express model developed to serve as a fast design tool offering fine simulation and a high precision level. The model establishes load sharing, fillet stresses and pressure distribution along the contacting surfaces of meshing helical gear teeth. The calculations combine the finite strip method with a pseudo-three-dimensional (3D) model of the tooth base solved with finite differences to calculate tooth bending deflexion and fillet stresses. The accuracy of the procedure is demonstrated through 3D FEM models. A contact cell discretization completes the model. This very fast and accurate approach gives the contact pressure distributions resulting from the roll-slide motion of mating teeth. An analysis of a helical gear set in two different assembly positions reveals the effects of edge contact, and exhibits the influence of tooth stiffness reduction near tooth corners.

1.
Gagnon
,
P.
,
Gosselin
,
C.
, and
Cloutier
,
L.
, 1997, “
Finite Strip Element for the Analysis of Variable Thickness Rectangular Thick Plates
,”
Comput. Struct.
0045-7949,
63
,
2
.
2.
Gagnon
,
P.
,
Gosselin
,
C.
, and
Cloutier
,
L.
, 1996, “
Analysis of Spur, Helical and Straight Bevel Gear Teeth Deflection by the Finite Strip Method
,”
ASME J. Mech. Des.
1050-0472,
118
.
3.
Poritsky
,
H.
,
Sutton
,
D.
, and
Pernick
,
A.
, 1945, “
Distribution of Tooth Load Along a Pinion
,”
J. Appl. Mech.
0021-8936,
12
,
2
, pp.
A78
86
.
4.
Elkholy
,
A. H.
, 1996, “
Load and Stress Variation Along Helical Gear Teeth
,”
Trans. Can. Soc. Mech. Eng.
0315-8977,
20
(
2
), pp.
159
174
.
5.
Smith
,
J. D.
, 1995, “
Estimation of the Static Load Distribution Factor for Helical Gears
,”
J. Mech. Eng. Sci.
0022-2542,
209
, pp.
193
199
.
6.
Börner
,
J.
, 1996, “
Very Efficient Calculation of the Load Distribution on External Gear Sets—The Method and Applications of the Program LVR
,”
Proc. of the 7th International Power Transmission and Gearing Conference
,
88
, pp.
219
225
.
7.
Kubo
,
A.
, 1978, “
Stress Condition, Vibrational Exciting Force, and Contact Pattern of Helical Gears With Manufacturing and Alignment Error
,”
ASME J. Mech. Des.
0161-8458,
100
, pp.
77
84
.
8.
Winter
,
H.
, and
Placzek
,
T.
, 1991, “
Load Distribution and Topological Flank Modification of Helical and Double Helical Gears
,”
Eur. J. Mech. Eng.
,
36
,
3
, pp.
171
176
.
9.
Vijayakar
,
S. M.
, 1996, “
Edge Effects in Gear Tooth Contact
,”
Proc. of the 7th International Power Transmission and Gearing Conference
,
88
, pp.
205
212
.
10.
Choi
,
M.
, and
David
,
J. W.
, 1990, “
Mesh Stiffness and Transmission Error of Spur and Helical Gears
,”
Trans. Can. Soc. Mech. Eng.
0315-8977, Vol.
20
(
2
), pp.
1599
1607
.
11.
de Vaujany
,
J. P.
,
Kim
,
H. C.
,
Guinguand
,
M.
, and
Play
,
D.
, 1996, “
Effect of Rim and Web on Stresses of Internal Cylindrical Gears
,”
Proc. of the 7th International Power Transmission and Gearing Conference
,
88
, pp.
73
80
.
12.
Kim
,
H. C.
,
de Vaujany
,
J. P.
,
Guingand
,
M.
,
Bard
,
C.
, and
Play
,
D.
, 1995, “
Stresses of External and Internal Cylindrical Gears. Effects of Rim, Web and Mechanical Constraint Conditions
,”
Ninth World Congress on the Theory of Machines and Mechanisms
, Milan, Italy,
1
, pp.
565
569
.
13.
Olakorédé
,
A. A.
, and
Play
,
D.
, 1991, “
Load Sharing, Load Distribution and Stress Analysis of Cylindrical Gears by Finite Prism Method
.
Design Productivity International Conference
, Honolulu, Hawaii, pp.
921
927
.
14.
Simon
,
V.
, 1988, “
Load and Stress Distributions in Spur and Helical Gears
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
110
, pp.
197
202
.
15.
Steward
,
J. H.
, 1990, “
The Compliance of Solid, Wide-Faced Spur Gears
,”
ASME J. Mech. Des.
1050-0472,
112
, pp.
590
595
.
16.
Sundarajan
,
S.
, and
Young
,
B. G.
, 1990 “
Finite-Element Analysis of Large Spur and Helical Gear Systems
,”
J. Propul. Power
0748-4658,
6
(
4
), pp.
451
454
.
17.
Gosselin
,
C.
,
Guilbault
,
R.
, and
Gagnon
P.
, 2000, “
The Finite Strip Method as an Alternative to the Finite Elements in Gear Tooth Stress and Strain Analysis
,”
AGMA Fall Technical Meeting
, Cincinnati, pp.
1
11
.
18.
Guilbault
,
R.
, 2000, “
Développement d’un Modèle Tridimensionnel d’engrenages Cylindriques Hélicoïdaux: Calcul des Distributions Linéiques de Charge et Contraintes au pied des Dents
,” Ph.D. thesis, Laval University.
19.
Fox
,
L.
, 1944, “
Solution by Relaxation Methods of Plane Potential Problems with Mixed Boundary Conditions
,”
Q. Appl. Math.
0033-569X,
2
(
3
), pp.
251
257
.
20.
Fox
,
L.
, 1947, “
Some Improvements in the Use of Relaxation Methods for the Solution of Ordinary and Partial Differential Equations
,”
Proc. R. Soc. London, Ser. A
1364-5021,
190
, pp.
31
59
.
21.
Fox
,
L.
, 1947, “
Mixed Boundary Conditions in the Relaxation Treatment of Biharmonic Problems (Plane Stain or Stress)
,”
Proc. R. Soc. London, Ser. A
1364-5021,
189
, pp.
535
543
.
22.
Wittrick
,
W. H.
, and
Howard
,
W.
, 1948, “
Relaxation Methods Applied to Two Problems of Two-Dimensional Stress Distribution Involving Mixed Boundary Conditions
,”
Aust. J. Sci. Res., Ser. A
0365-3676,
1
, pp.
135
160
.
23.
Jaramillo
,
T. J.
, 1950,
Deflections and Moments Due to a Concentrated Load on a Cantilever Plate of Infinite Length
.
J. Appl. Mech.
0021-8936,
17
(
1
), pp.
67
72
.
24.
Oda
,
S.
,
Koide
,
T.
,
Ikeda
,
T.
, and
Umezawa
,
T.
, 1986, “
Effects of Pressure Angle on Tooth Deflection and Root Stress
,”
Bull. JSME
0021-3764,
29
(
255
), pp.
3141
3148
.
25.
Small
,
N. C.
, 1961, “
Bending of a Cantilever Plate Supported from an Elastic Half Space
,”
J. Appl. Mech.
0021-8936, pp.
387
394
.
26.
Tobe
,
T.
,
Kato
,
M.
, and
Inoue
,
K.
, 1978, “
Bending of Stub Cantilever Plate and Some Applications to Strength of Gear Teeth
,”
ASME J. Mech. Des.
0161-8458,
100
, pp.
374
381
.
27.
Hartnett
,
M. J.
, 1980, “
A General Numerical Solution for Elastic Body Contact Problems
,”
Solid contact and lubrication AMD ASME
,
39
, pp.
51
66
.
28.
Love
,
A. E. H.
, 1929, “
The Stress Produced in a Semi-Infinite Solid by Pressure on Part of the Boundary
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
228
, pp.
377
420
.
29.
Johnson
,
K. L.
, 1987,
Contact Mechanics
,
Cambridge University Press
, Cambridge.
30.
Parker
,
R. G.
,
Vijayakar
,
S. M.
, and
Imajo
,
T.
, 2000, “
Non-Linear Dynamic Reponse of a Spur Gear Pair: Modelling and Experimental Comparisons
,”
J. Sound Vib.
0022-460X,
237
(
3
), pp.
435
455
.
31.
de Mul
,
J. M.
,
Kalker
,
J. J.
, and
Fredriksson
,
B.
, 1986, “
The Contact Between Arbitrarily Curved Bodies of Finite Dimensions
,”
Trans. ASME, J. Tribol.
0742-4787,
108
, pp.
140
148
.
You do not currently have access to this content.