A new hybrid genetic algorithm is presented for the solution of mixed-discrete nonlinear design optimization. In this approach, the genetic algorithm (GA) is used mainly to determine the optimal feasible region that contains the global optimum point, and the hybrid negative subgradient method integrated with discrete one-dimensional search is subsequently used to replace the GA to find the final optimum solution. The hybrid genetic algorithm, combining the advantages of random search and deterministic search methods, can improve the convergence speed and computational efficiency compared with some other GAs or random search methods. Several practical examples of mechanical design are tested using the computer program developed. The numerical results demonstrate the effectiveness and robustness of the proposed approach.

1.
Hajela
,
P.
, and
Shih
,
C. J.
, 1989, “
Optimal design of laminated composites using a modified mixed integer and discrete programming algorithm
,”
Comput. Struct.
0045-7949,
32
, pp.
213
221
.
2.
Sandgren
,
E.
, 1990, “
Nonlinear integer and discrete programming in mechanical design optimization
,”
ASME J. Mech. Des.
1050-0472,
112
, pp.
223
229
.
3.
Salajegheh
,
E.
, and
Vanderplaats
,
G. N.
, 1993, “
Optimum design of trusses with sizing and shape variables
,”
Struct. Optim.
0934-4373,
6
, pp.
79
85
.
4.
Loh
,
H. T.
, and
Papalambros
,
P. Y.
, 1991, “
A sequential linearization approach for solving mixed-discrete nonlinear design optimization problems
,”
ASME J. Mech. Des.
1050-0472,
113
, pp.
325
334
.
5.
Loh
,
H. T.
, and
Papalambros
,
P. Y.
, 1991, “
Computational implementation and tests of a sequential linearization algorithm for mixed-discrete nonlinear design optimization
,”
ASME J. Mech. Des.
1050-0472,
113
, pp.
335
344
.
6.
Shin
,
D. K.
,
Gurdal
,
Z.
, and
Griffin
,
O. H.
Jr.
, 1990, “
A penalty approach for nonlinear optimization with discrete design variables
,”
Eng. Optimiz.
0305-215X,
16
, pp.
29
42
.
7.
Cai
,
J.
, and
Thierauf
,
G.
, 1993, “
Discrete optimization of structures using an improved penalty function method
,”
Eng. Optimiz.
0305-215X,
17
, pp.
293
306
.
8.
Jonsson
,
O.
, and
Larsson
,
T.
, 1990, “
Lagrangean relaxation and subgradient optimization applied to optimal design with discrete sizing
,”
Eng. Optimiz.
0305-215X,
16
, pp.
221
233
.
9.
Bremicker
,
M.
,
Papalambros
,
P. Y.
, and
Loh
,
H. T.
, 1990, “
Solution of mixed-discrete structural optimization problems with a new sequential linearization algorithm
,”
Comput. Struct.
0045-7949,
37
, pp.
451
461
.
10.
Kincaid
,
R. K.
, and
Padula
,
S. L.
, 1990, “
Minimizing distortion and internal forces in truss structures by simulated annealing
,” AIAA-90-1095-CP, pp.
327
333
.
11.
Arora
,
J. S.
, and
Huang
,
M. W.
, 1994, “
Methods for optimization of nonlinear problems with discrete variables: a review
,”
Struct. Optim.
0934-4373,
8
, pp.
69
85
.
12.
Fox
,
D. B.
, 1981, “
A composite algorithm for mixed integer constrained nonlinear optimization
,”
Eng. Optimiz.
0305-215X,
5
, pp.
129
149
.
13.
Holland
,
J. H.
, 1975,
Adaptation in Natural and Artificial Systems
,
University of Michigan
, Ann Arbor, MI.
14.
Yoshimura
,
M.
, and
Izui
,
K.
, 2002, “
Smart Optimization of Machine Systems Using Hierarchical Genotype Representations
,”
J. Mech. Des.
1050-0472,
124
(
3
), pp.
375
384
.
15.
Tai
,
K.
,
Cui
,
G. Y.
, and
Ray
,
T.
, 2002, “
Design Synthesis of Path Generating Compliant Mechanisms by Evolutionary Optimization of Topology and Shape
,”
J. Mech. Des.
1050-0472,
124
,
492
500
.
16.
Rao
,
A. C.
, 2000, “
A Genetic Algorithm for Topological Characteristics of Kinematic Chains
,”
J. Mech. Des.
1050-0472,
122
(
2
),
228
231
.
17.
Deb
,
K.
, and
Jain
,
S.
, 2003, “
Multi-Speed Gearbox Design Using Multi-Objective Evolutionary Algorithms
,”
J. Mech. Des.
1050-0472,
125
,
609
615
.
18.
Grignon
,
P. M.
, and
Fadel
,
G. M.
, 2004, “
A GA Based Configuration Design Optimization Method
,”
J. Mech. Des.
1050-0472,
126
(
1
),
6
15
.
19.
Yoshimura
,
M.
, and
Izui
,
K.
, 2004, “
Hierarchical Parallel Processing of Genetic Algorithms for Design Optimization of Large-Scale Products
,”
J. Mech. Des.
1050-0472,
126
(
2
),
217
224
.
20.
Ragsdell
,
K. M.
, and
Phillips
,
D. T.
, 1976, “
Optimal design of a class of welded structures using geometric programming
,”
ASME J. Eng. Ind.
0022-0817,
98
, pp.
1021
1025
.
21.
Shih
,
C. J.
, and
Lai
,
T. K.
, 1995, “
Mixed-discrete fuzzy programming for nonlinear engineering optimization
,”
Eng. Optimiz.
0305-215X,
23
, pp.
187
199
.
22.
Rajeev
,
S.
, and
Krishnamoorthy
,
C. S.
, 1992, “
Discrete optimization of structures using genetic algorithms
,”
J. Struct. Eng.
0733-9445,
118
, pp.
1233
1250
.
23.
Lin
,
C. Y.
, and
Hajela
,
P.
, 1992, “
Genetic algorithms in optimization problems with discrete and integer design variables
.”
Eng. Optimiz.
0305-215X,
19
, pp.
309
327
.
24.
Cheung
,
B. K.-S.
,
Langevin
,
A.
, and
Delmaire
,
H.
, 1997, “
Coupling genetic slgorithm with s grid sesrch method to solve mixed integer nonlinear programming problems
,”
Comput. Math. Appl.
0898-1221,
34
, pp.
13
23
.
25.
Chen
,
J. L.
, and
Tsao
,
Y. C.
, 1993, “
Optimal design of machine elements using genetic algoritms
,”
J. Chin. Soc. Mech. Eng.
0257-9731,
14
, pp.
193
199
.
26.
Wu
,
S.-J.
, and
Chow
,
P.-T.
, 1995, “
Integrated discrete and configuration optimization of trusses using genetic algorithms
,”
Comput. Struct.
0045-7949,
55
, pp.
695
702
.
27.
Ostermark
,
R.
, 1999, “
Solving a nonlinear non-convex trim loss problem with a genetic hybrid algorithm
,”
Comput. Oper. Res.
0305-0548,”
26
, pp.
623
635
.
28.
Xiong
,
Y.
, “
Mixed discrete fuzzy nonlinear programming for engineering design optimization
,” Ph.D. thesis, University of Miami, 2002.
29.
Chen
,
L. Z.
, 1987, “
Mixed discrete composite algorithm and programming
,” Journal of Beijing Institute of Science & Technology,
9
.
30.
Lai
,
G. X.
, 1988, “
Constrained variable metric method for mixed discrete nonlinear optimization-research and application
,” Ph.D. thesis, Huazhong University of Science and Technology.
31.
Rao
,
S. S.
, 1987, “
Game theory approach for multiobjective structural optimization
,”
Comput. Struct.
0045-7949,
25
,
119
127
.
32.
Amir
,
H. M.
, and
Hasegawa
,
T.
, 1989, “
Nonlinear mixed-discrete structural optimization
,”
J. Struct. Eng.
0733-9445,
115
, pp.
626
645
.
33.
Shih
,
C. J.
, and
Chi
,
C. T.
, 1993, “
Maximized Adams damping in the design of composite laminate beam by branch-and-bound with max-partial derivative branching algorithm
,”
ASME Compos. Mater. Technol.
,
53
, pp.
163
170
.
34.
Li
,
H. L.
, and
Papalambros
,
P.
, 1985, “
A production system for use of global optimization knowledge
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
107
, pp.
277
284
.
35.
Li
,
W. C.
, and
Azarm
,
S.
, 1990, “
Optimality and constrained derivatives in two-level design optimization
,”
ASME J. Mech. Des.
1050-0472,
112
, pp.
563
568
.
36.
Fu
,
J. F.
,
Fenton
,
R. G.
, and
Cleghorn
,
W. L.
, 1991, “
A mixed integer-discrete-continuous programming method and its application to engineering design optimization
,”
Eng. Optimiz.
0305-215X,
17
, pp.
263
280
.
37.
Sarma
,
K. C.
, and
Adeli
,
H.
, 2000, “
Fuzzy genetic algorithm for optimization of steel structures
,”
J. Struct. Eng.
0733-9445,
126
, pp.
596
604
.
38.
Coello Coello
,
C. A.
, 2000, “
Treating constraints as objectives for single objective evolutionary optimization
,”
Eng. Optimiz.
0305-215X,
32
, pp.
275
308
.
39.
Pezeshk
,
S.
,
Camp
,
C. V.
, and
Chen
,
D.
, 2000, “
Design of non-linear framed structures using genetic optimization
,”
J. Struct. Eng.
0733-9445,
126
, pp.
382
388
.
40.
Camp
,
C. V.
,
Pezeshk
,
S.
, and
Hansson
,
H.
, 2003, “
Flexural design of reinforced concrete frames using a genetic algorithm
,”
J. Struct. Eng.
0733-9445,
129
, pp.
105
115
.
You do not currently have access to this content.