Both multiple objectives and computation-intensive black-box functions often exist simultaneously in engineering design problems. Few of existing multiobjective optimization approaches addresses problems with expensive black-box functions. In this paper, a new method called the Pareto set pursuing (PSP) method is developed. By developing sampling guidance functions based on approximation models, this approach progressively provides a designer with a rich and evenly distributed set of Pareto optimal points. This work describes PSP procedures in detail. From testing and design application, PSP demonstrates considerable promises in efficiency, accuracy, and robustness. Properties of PSP and differences between PSP and other approximation-based methods are also discussed. It is believed that PSP has a great potential to be a practical tool for multiobjective optimization problems.

1.
Keeney
,
R. L.
, and
Raifa
,
H.
(1976),
Decisions with multiple objective: preferences and value tradeoff
,
John Wiley and Sons
, New York.
2.
Marler
,
R. T.
, and
Arora
,
J. S.
(2004), “
Survey of multi-objective optimization methods for engineering
,”
Struct. Multidiscip. Optim.
1615-147X,
26
, pp.
369
395
.
3.
Chen
,
W.
,
Wiecek
,
M. M.
, and
Zhang
,
J.
(1999), ”
Quality utility—a compromise programming approach to robust design
,”
ASME J. Mech. Des.
1050-0472,
121
, pp.
179
187
.
4.
Messac
,
A.
(1996), “
Physical programming: effective optimization for computational design
,”
AIAA J.
0001-1452,
34
(
1
), pp.
149
158
.
5.
Tappeta
,
R. V.
, and
Renaud
,
J. E.
(1999), “
Interactive multiobjective optimization procedure
,”
AIAA J.
0001-1452,
37
(
7
), pp.
881
889
.
6.
Tappeta
,
R. V.
,
Renaud
,
J. E.
,
Messac
,
A.
, and
Sundararaj
,
G.
(2000), “
Interactive physical programming: tradeoff analysis and decision making in multicriteria optimization
,”
AIAA J.
0001-1452,
38
(
5
), pp.
917
926
.
7.
Tappeta
,
R. V.
, and
Renaud
,
J. E.
(2001), “
Interactive Multiobjective Optimization Design Strategy for Decision Based Design
,”
ASME J. Mech. Des.
1050-0472,
123
, pp.
205
215
.
8.
Schaumann
,
E. J.
,
Balling
,
R. J.
, and
Day
,
K.
(1998), “
Genetic algorithms with multiple objectives
,”
7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
, St. Louis, MO, AIAA Vol.
3
, Sept. 2–4, 1998, pp.
2114
2123
, Paper No. AIAA-98-4974.
9.
Deb
,
K.
(1999), “
Evolutionary algorithms for multi-criterion optimization in engineering design
,”
Proceedings of evolutionary algorithms in engineering, & computer science
, Eurogen-99.
10.
Deb
,
K.
,
Mohan
,
M.
, and
Mishra
,
S.
(2003), “
A fast multi-objective evolutionary algorithm for finding well-spread pareto-optimal solutions
,” Report No. 2003002,
Indian Institute of Technology Kanpur
, Kanpur.
11.
Srinivas
,
N.
, and
Deb
,
K.
(1994), “
Multiobjective optimization using nondominated sorting in genetic algorithms
,”
Evol. Comput.
1063-6560,
2
(
3
), pp.
221
248
.
12.
Nain
,
P. K. S.
, and
Deb
,
K.
(2002), “
A computationally effective multi-objective search and optimization technique using coarse-to-fine grain modeling
,” Report No. 2002005,
Indian Institute of Technology Kanpur
, Kanpur.
13.
Luh
,
G.-C.
,
Chueh
,
C.-H.
, and
Liu
,
W.-W.
(2003), “
MOIA: multi-objective immune algorithm
,”
Eng. Optimiz.
0305-215X,
35
(
2
), pp.
143
164
.
14.
Deb
,
K.
, and
Jain
,
S.
(2003), “
Multi-Speed Gearbox Design Using Multi-Objective Evolutionary Algorithms
,”
ASME J. Mech. Des.
1050-0472,
125
, pp.
609
619
.
15.
Saitou
,
K.
, and
Cetin
,
O. L.
(2004), “
Decomposition-Based Assembly Synthesis for Structural Modularity
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
234
243
.
16.
Wilson
,
B.
,
Cappelleri
,
D. J.
,
Simpson
,
T. W.
, and
Frecker
,
M. I.
(2001), “
Efficient Pareto frontier exploration using surrogate approximations
,”
Optim. Eng.
1389-4420,
2
, pp.
31
50
.
17.
Li
,
Y.
,
Fadel
,
G. M.
, and
Wiecek
,
M. M.
(1998), “
Approximating Pareto curves using the hyperellipse
,”
7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
, St. Louis, Paper No. AIAA-98-4961.
18.
Yang
,
B. S.
,
Yeun
,
Y.-S.
, and
Ruy
,
W.-S.
(2003), “
Managing Approximation Models in Multiobjective Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
24
, pp.
141
156
.
19.
Ross
,
S. M.
(2002),
Simulation
, 3rd ed.,
Academic Press
, San Diego, CA.
20.
Fu
,
J. C.
, and
Wang
,
L.
(2002), “
A random-discretization based Monte Carlo sampling method and its applications
,”
Methodol. Comput. Appl. Probab.
1387-5841,
4
, pp.
5
25
.
21.
Wang
,
L.
,
Shan
,
S.
, and
Wang
,
G. G.
(2004), “
Mode-Pursuing sampling method for global optimization on expensive black-box functions
,”
Eng. Optimiz.
0305-215X,
36
(
4
), pp.
419
438
.
22.
Audet
,
C.
, and
Dennis
,
J. E.
(2004), “
A Pattern Search Filter Method for Nonlinear Programming Without Derivatives
,”
SIAM J. Optim.
1052-6234,
14
(
4
), pp.
980
1010
.
23.
Michalewics
,
Z.
(1995), “
A Survey of Constraint Handling Techniques in Evolutionary Computation Methods
,”
Proceedings of the Fourth Annual Conference on Evolutionary Programming
, edited by
J.
McDonnell
,
R.
Reynolds
, and
D.
Fogel
(ed.),
MIT Press
, Cambridge, MA, pp.
135
155
.
24.
Myers
,
R. H.
, and
Montgomery
,
D. C.
(1995),
Response surface methodology, process and product optimization using designed experiments
,
John Wiley & Sons
, Inc.
25.
Jin
,
R.
,
Chen
,
W.
, and
Simpson
,
T. W.
(2001), “
Comparative Studies of Metamodeling Techniques under Multiple Modeling Criteria
,”
Struct. Multidiscip. Optim.
1615-147X,
23
(
1
), pp.
1
13
.
26.
Ong
,
Y. S.
,
Nair
,
P. B.
, and
Keane
,
A. J.
(2003), “
Evolutionary Optimization of Computationally Expensive Problems via Surrogate Modeling
,”
AIAA J.
0001-1452,
41
(
4
), pp.
687
696
.
27.
Ray
,
T.
, and
Tsai
,
H. M.
(2004), “
Swarm Algorithm for Single- and Multiobjective Airfoil Design Optimization
,”
AIAA J.
0001-1452,
42
(
2
), pp.
366
373
.
28.
Dong
,
Z.
(1999), “
Fuel cell stack assembly
,”
Patent Cooperation Treaty Patent WO
, AU, CA, CN, IN, JP, KR, SG, US, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE). Patent No. 99/57781, November 11, 1999.
29.
Wang
,
G. G.
(1999), “
A quantitative concurrent engineering design method using virtual prototyping-based global optimization and its application in transportation fuel cells
,” Ph.D. Dissertation, University of Victoria, Victoria, Canada.
30.
Farhang-Mehr
,
A.
, and
Azarm
,
S.
(2003), “
An Information-Theoretic Entropy Metric for Assessing Multi-objective Optimization Solution Set Quality
,”
ASME J. Mech. Des.
1050-0472,
125
, pp.
655
663
.
31.
Zitzler
,
E.
,
Thiele
,
L.
,
Laumanns
,
M.
,
Fonseca
,
C. M.
, and
da Fonseca
,
V. G.
(2003), “
Performance Assessment of Multiobjective Optimizers: An Analysis and Review
,”
IEEE Trans. Evol. Comput.
1089-778X,
7
(
2
), pp.
117
132
.
You do not currently have access to this content.