A noise-vibration-harshness (NVH) design optimization of a complex vehicle structure is presented using finite element and boundary element analyses. The steady-state dynamic behavior of the vehicle is calculated from the frequency response finite element analysis, while the sound pressure level within the acoustic cavity is calculated from the boundary element analysis. A reverse solution process is employed for the design sensitivity calculation using the adjoint variable method. The adjoint load is obtained from the acoustic boundary element re-analysis, while the adjoint solution is calculated from the structural dynamic re-analysis. The evaluation of pressure sensitivity only involves a numerical integration process over the structural part where the design variable is defined. A design optimization problem is formulated and solved, where the structural weight is reduced while the noise level in the passenger compartment is lowered.

1.
Hughes, T. J. R., 1987, The Finite Element Method, Prentice-Hall, Englewood Cliffs, NJ.
2.
Kythe, P. K., 1995, Introduction to Boundary Element Methods, CRS Press, Florida.
3.
Lyon, R., 1975, Statistical Energy Analysis of Dynamical Systems: Theory and Application, The MIT Press, Cambridge, MA.
4.
Rybak
,
S. A.
,
1972
, “
Waves in Plate Containing Random Inhomogeneities
,”
Sov. Phys. Acoust.
,
17
(
3
), pp.
345
349
.
5.
Nefske
,
D. J.
, and
Sung
,
S. H.
,
1989
, “
Power Flow Finite-Element Analysis of Dynamic-Systems—Basic Theory and Application to Beams
,”
ASME J. Vibr., Acoust., Stress, Reliab. Des.
,
111
(
1
), pp.
94
100
.
6.
Bernhard
,
R. J.
, and
Huff
,
J. E.
,
1999
, “
Structural-Acoustic Design at High Frequency Using the Energy Finite Element Method
,”
ASME J. Vibr. Acoust.
,
121
(
3
), pp.
295
301
.
7.
Vlahopoulos
,
N.
,
Garza-Rios
,
L. O.
, and
Mollo
,
C.
,
1999
, “
Numerical Implementation, Validation, and Marine Applications of an Energy Finite Element Formulation
,”
J. Ship Res.
,
43
(
3
), pp.
143
156
.
8.
Gockel, M. A., 1983, MSC/NASTRAN Handbook for Dynamic Analysis, The MacNeal-Schwendler Corporation, 815 Colorado Blvd., Los Angeles, CA.
9.
COMET/ACOUSTICS User’s Manual, Automated Analysis Corporation.
10.
Ma
,
Z.-D.
, and
Hagiwara
,
I.
,
1991
, “
Sensitivity Analysis-Method for Coupled Acoustic-Structural Systems Part 2: Direct Frequency-Response and Its Sensitivities
,”
AIAA J.
,
29
, pp.
1796
1801
.
11.
Choi
,
K. K.
,
Shim
,
I.
, and
Wang
,
S.
,
1997
, “
Design Sensitivity Analysis of Structure-Induced Noise and Vibration
,”
ASME J. Vibr. Acoust.
,
119
, pp.
173
179
.
12.
Nefske
,
D. J.
,
Wolf
,
J. A.
, and
Howell
,
L. J.
,
1982
, “
Structural-Acoustic Finite Element Analysis of the Automobile Passenger Compartment: A Review of Current Practice
,”
J. Sound Vib.
,
80
, pp.
247
266
.
13.
Salagame
,
R. R.
,
Belegundu
,
A. D.
, and
Koopman
,
G. H.
,
1995
, “
Analytical Sensitivity of Acoustic Power Radiated From Plates
,”
ASME J. Vibr. Acoust.
,
117
, pp.
43
48
.
14.
Scarpa
,
F.
,
2000
, “
Parametric Sensitivity Analysis of Coupled Acoustic-Structural Systems
,”
ASME J. Vibr. Acoust.
,
122
, pp.
109
115
.
15.
Smith
,
D. C.
, and
Bernhard
,
R. J.
,
1992
, “
Computation of Acoustic Shape Design Sensitivity Using a Boundary Element Method
,”
ASME J. Vibr. Acoust.
,
114
, pp.
127
132
.
16.
Cunefare
,
K. A.
, and
Koopman
,
G. H.
,
1992
, “
Acoustic Design Sensitivity for Structural Radiators
,”
ASME J. Vibr. Acoust.
,
114
, pp.
179
186
.
17.
Kane
,
J. H.
,
Mao
,
S.
, and
Everstine
,
G. C.
,
1991
, “
Boundary Element Formulation for Acoustic Shape Sensitivity Analysis
,”
J. Acoust. Soc. Am.
,
90
, pp.
561
573
.
18.
Matsumoto
,
T.
,
Tanaka
,
M.
, and
Yamada
,
Y.
,
1995
, “
Design Sensitivity Analysis of Steady-State Acoustic Problems Using Boundary Integral Equation Formulation
,”
JSME Int. J., Ser. C
,
38
, pp.
9
16
.
19.
Kim
,
N. H.
,
Dong
,
J.
,
Choi
,
K. K.
,
Vlahopoulos
,
N.
,
Ma
,
Z.-D.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2003
, “
Design Sensitivity Analysis for Sequential Structural-Acoustic Problems
,”
J. Sound Vib.
,
26
(
33
), June, pp.
569
591
.
20.
Kim, N. H., Choi, K. K., Dong, J., Pierre, C., Vlahopoulos, N., Ma, Z.-D., and Castanier, M., 2001, “A Sequential Adjoint Variable Method in Design Sensitivity Analysis of NVH Problems,” ASME International Mechanical Engineering Congress and Exposition (IMECE’01), November 11–16, New York, NY.
21.
Chang
,
K. H.
,
Choi
,
K. K.
,
Tsai
,
C. S.
,
Chen
,
C. J.
,
Choi
,
B. S.
, and
Yu
,
X.
,
1995
, “
Design Sensitivity Analysis and Optimization Tool (DSO) for Shape Design Applications
,”
Computing Systems in Engineering
,
6
(
2
), pp.
151
175
.
22.
Vanderplaats, G. N., 1997, DOT User’s Manual, VMA Corp., Colorado Springs, CO.
23.
Horvath, J., 1966, Topological Vector Spaces and Distributions, Addison-Wesley, London.
24.
Dimarogonas, A. D., 1976, Vibration Engineering, West Publishing Co., St. Paul, MN.
You do not currently have access to this content.