This paper presents a dual quaternion methodology for the kinematic synthesis of constrained robotic systems. These systems are constructed from one or more serial chains such that each chain imposes at least one constraint on the movement of the workpiece. Serial chains that have constrained workspaces can be synthesized by evaluating the kinematics equations of the chain on a finite set of task positions. In this case, the end-effector positions are known and the Denavit-Hartenberg parameters become design variables. Here we reformulate the kinematics equations in terms of successive screw displacements so the design variables are the coordinates defining the joint axes of the chain in a reference position. Then, dual quaternions defining these transformations are introduced to simplify the structure of the design equations. The result is a synthesis formulation that can be applied to a broad range of constrained serial chains, which can in turn be assembled into constrained parallel robots. We demonstrate the formulation and solution of the dual quaternion design equations for the spatial RPRP chain.

1.
Schoenflies, A., 1886, Geometrie der Bewegung in Synthetischer Darstellung, Leipzig, Germany. (See also the French translation: La Ge´ome´trie du Movement, Paris, 1983.)
2.
Burmester, L., 1886, Lehrbuch der Kinematik, Verlag Von Arthur Felix, Leipzig, Germany.
3.
Roth
,
B.
,
1967
, “
Finite Position Theory Applied to Mechanism Synthesis
,”
ASME J. Appl. Mech.
,
34E
, pp.
599
605
.
4.
Hartenberg, R., and Denavit, J., 1964, Kinematic Synthesis of Linkages, McGraw-Hill, New York, NY.
5.
Sandor, G. N., and Erdman, A. G., 1984, Advanced Mechanism Design: Analysis and Synthesis, Vol. 2. Prentice-Hall, Englewood Cliffs, NJ.
6.
Suh, C. H., and Radcliffe, C. W., 1978, Kinematics and Mechanisms Design, John Wiley & Sons, New York.
7.
McCarthy, J. M., 2000, Geometric Design of Linkages, Springer-Verlag, New York.
8.
Hunt, K. H., 1978, Kinematic Geometry of Mechanisms, Clarendon Press.
9.
Suh
,
C. H.
,
1968
, “
Design of Space Mechanisms for Rigid-Body Guidance
,”
ASME J. Ind.
,
90B
, pp.
499
506
.
10.
McCarthy
,
J. M.
,
1995
, “
The Synthesis of Planar RR and Spatial CC Chains and the Equation of a Triangle
,”
ASME J. Mech. Des.
,
117
(
B
), pp.
101
106
.
11.
Huang, C., and Chang, Y-J., 2000, “Polynomial Solution to the Five-Position Synthesis of Spatial C-C Dyads via Dialytic Elimination,” Proc. ASME Design Engineering Technical Conference, Paper No. DETC2000/MECH-14102, Baltimore, Maryland, Sept. 10–13.
12.
Kihonge
,
J. N.
,
Vance
,
J. M.
, and
Larochelle
,
P. M.
,
2002
, “
Spatial Mechanism Design in Virtual Reality with Networking
,”
ASME J. Mech. Des.
,
124
(
3
), pp.
435
440
.
13.
Innocenti
,
C.
,
1995
, “
Polynomial Solution of the Spatial Burmester Problem
,”
ASME J. Mech. Des.
,
117
(1).
14.
Liao
,
Q.
, and
McCarthy
,
J. M.
,
2001
, “
On the Seven Position Synthesis of a 5-SS Platform Linkage
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
74
79
.
15.
Chen
,
P.
, and
Roth
,
B.
,
1967
, “
Design Equations for Finitely and Infinitesimally Separated Position Synthesis of Binary Link and Combined Link Chains
,”
ASME J. Ind.
,
91
, pp.
209
219
.
16.
Nielsen, J., and Roth, B., 1995, “Elimination Methods for Spatial Synthesis,” Computational Kinematics, J. P. Merlet and B. Ravani eds., Vol. 40 of Solid Mechanics and Its Applications, pp. 51–62, Kluwer Academic Publishers.
17.
Kim
,
H. S.
, and
Tsai
,
L. W.
,
2003
, “
Kinematic Synthesis of Spatial 3-RPS Parallel Manipulators
,”
ASME J. Mech. Des.
,
125
(
1
), pp.
92
97
.
18.
Tsai
,
L. W.
, and
Roth
,
B.
,
1972
, “
Design of Dyads with Helical, Cylindrical, Spherical, Revolute and Prismatic Joints
,”
Mech. Mach. Theory
,
7
, pp.
591
598
.
19.
Tsai, L. W., 1972, “Design of Open Loop Chains for Rigid Body Guidance,” Ph.D. Thesis, Department of Mechanical Engineering, Stanford University.
20.
Tsai
,
L. W.
, and
Roth
,
B.
,
1973
, “
A Note on the Design of Revolute-Revolute Cranks
,”
Mech. Mach. Theory
,
8
, pp.
23
31
.
21.
Perez, A., and McCarthy, J. M., 2000, “Dimensional Synthesis of Bennett Linkages,” Proc. 2000 ASME Design Engineering Technical Conferences, Baltimore, MD, Sept. 10–13.
22.
Sandor
,
G. N.
,
1968
, “
Principles of a General Quaternion-Operator Method of Spatial Kinematic Synthesis
,”
ASME J. Appl. Mech.
,
35
(
1
), pp.
40
46
.
23.
Sandor
,
G. N.
, and
Bisshopp
,
K. E.
,
1969
, “
On a General Method of Spatial Kinematic Synthesis by Means of a Stretch-Rotation Tensor
,”
ASME J. Ind.
,
91
, pp.
115
122
.
24.
Sandor
,
G. N.
,
Weng
,
T. C.
, and
Xu
,
Y.
,
1988
, “
The Synthesis of Spatial Motion Generators With Prismatic, Revolute and Cylindric Pairs Without Branching Defect
,”
Mech. Mach. Theory
,
23
(
4
), pp.
69
274
.
25.
Sandor
,
G. N.
,
Xu
,
Y.
, and
Weng
,
T. C.
,
1986
, “
Synthesis of 7-R Spatial Motion Generators with Prescribed Crank Rotations and Elimination of Branching
,”
Int. J. Robot. Res.
,
5
(
2
), pp.
143
156
.
26.
Mavroidis
,
C.
,
Lee
,
E.
, and
Alam
,
M.
,
2001
, “
A New Polynomial Solution to the Geometric Design Problem of Spatial RR Robot Manipulators Using the Denavit-Hartenberg Parameters
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
58
67
.
27.
Lee, E., Mavroidis, C., and Merlet, J. P., 2002, “Five Precision Points Synthesis of Spatial RRR Manipulators Using Interval Analysis,” Proc. ASME 2002 Design Eng. Tech. Conf., paper no. DETC2002/MECH-34272, Sept. 29-Oct. 2, Montreal, Canada.
28.
Lee
,
E.
, and
Mavroidis
,
D.
,
2002
, “
Solving the Geometric Design Problem of Spatial 3R Robot Manipulators Using Polynomial Homotopy Continuation
,”
ASME J. Mech. Des.
,
124
(
4
), pp.
652
661
.
29.
Lee, E., and Mavroidis, D., 2002, “Geometric Design of Spatial PRR Manipulators Using Polynomial Elimination Techniques,” Proc. ASME 2002 Design Eng. Tech. Conf., paper no. DETC2002/MECH-34314, Sept. 29-Oct. 2, Montreal, Canada.
30.
Gupta
,
K. C.
,
1986
, “
Kinematic Analysis of Manipulators Using Zero Reference Position Description
,”
Int. J. Robot. Res.
,
5
(
2
), pp.
5
13
.
31.
Tsai, L. W., 1999, Robot Analysis: The Mechanics of Serial and Parallel Manipulators, John Wiley and Sons, New York, NY.
32.
Yang
,
A. T.
, and
Freudenstein
,
F.
,
1964
, “
Application of Dual-Number Quaternion Algebra to the Analysis of Spatial Mechanisms
,”
ASME J. Appl. Mech.
, June, pp.
300
308
.
33.
McCarthy, J. M., 1990, Introduction to Theoretical Kinematics, The MIT Press, Cambridge, MA.
34.
Shoham
,
M.
, and
Jen
,
F. H.
,
1994
, “
On Rotations and Translations with Application to Robot Manipulators
,”
Advanced Robotics
,
8
(
2
), pp.
203
229
.
35.
Angeles, J., 1998, “The Application on Dual Algebra to Kinematic Analysis,” Computational Methods in Mechanical Systems, NATO ASI Series, J. Angeles and E. Zakhariev, eds., Springer, Berlin.
36.
Ravani, B., and Ge Q. J., 1991, “Kinematic Localization for World Model Calibration in Off-Line Robot Programming Using Clifford Algebra,” Proc. of IEEE International Conf. on Robotics and Automation, Sacramento, CA, April, pp. 584–589.
37.
Larochelle, P., 2000, “Approximate Motion Synthesis via Parametric Constraint Manifold Fitting,” Advances in Robot Kinematics, J. Lenarcic and M. M. Stanisic, eds., Kluwer Acad. Publ., Dordrecht.
38.
Perez, A., and McCarthy, J. M., 2002, “Dual Quaternion Synthesis of Constrained Robots,” Advances in Robot Kinematics, J. Lenarcic and F. Thomas, eds., Kluwer Academic Publ. 443–454. Caldes de Malavella, Spain, June 24–29.
39.
Craig, J. J., 1989, Introduction to Robotics, Mechanics and Control, Addison Wesley Publ. Co, Reading, MA.
40.
Bottema, O., and Roth, B., 1979, Theoretical Kinematics, North Holland Press, NY.
41.
Perez, A., 2003, “Dual Quaternion Synthesis of Constrained Robotic Systems,” Ph.D. Thesis, Department of Mechanical Engineering, University of California, Irvine.
42.
Verschelde
,
J.
,
1999
, “
Algorithm 795: PHCpack: A Generalpurpose Solver for Polynomial Systems by Homotopy Continuation
,”
ACM Trans. Math. Softw.
,
25
(
2
),
251276
251276
, 1999. Software available at http://www.math.uic.edu/jan.
43.
Su, H., Collins, C., and McCarthy, J. M., “An Extensible Java Applet for Spatial Linkage Synthesis,” Proc. ASME Des, Eng. Technical Conferences, paper no. DETC2002/MECH-24271, Montreal, Canada, 2002.
44.
Collins
,
C.
,
McCarthy
,
J. M.
,
Perez
,
A.
, and
Su
,
H.
,
2002
, “
The Structure of an Extensible Java Applet for Spatial Linkage Synthesis
,”
ASME J. Computing and Information Science in Engineering
,
2
(
1
), pp.
45
49
.
You do not currently have access to this content.