This paper considers the design of cylindric PRS serial chains. This five degree-of-freedom robot can be designed to reach an arbitrary set of eight spatial positions. However, it is often convenient to choose some of the design parameters and specify a task with fewer positions. For this reason, we study the three through eight position synthesis problems and consider various choices of design parameters for each. A linear product decomposition is used to obtain bounds on the number of solutions to these design problems. For all cases of six or fewer positions, the bound is exact and we give a reduction of the problem to the solution of an eigenvalue problem. For seven and eight position tasks, the linear product decomposition is useful for generating a start system for solving the problems by continuation. The large number of solutions so obtained contraindicates an elimination approach for seven or eight position tasks, hence continuation is the preferred approach.

1.
McCarthy, J. M., 2000, Geometric Design of Linkages, Springer-Verlag, New York, NY.
2.
Tsai, L.-W., 1972, “Design of Open Loop Chains for Rigid Body Guidance,” Ph.D. Thesis, Department of Mechanical Engineering, Stanford University.
3.
Tsai
,
L.-W.
, and
Roth
,
B.
,
1972
, “
Design of Dyads with Helical, Cylindrical, Spherical, Revolute and Prismatic Joints
,”
Mech. Mach. Theory
,
7
, pp.
591
598
.
4.
Krovi
,
V.
,
Ananthasuresh
,
G. K.
, and
Kumar
,
V.
,
2001
, “
Kinematic Synthesis of Spatial RR Dyads for Path Following with Applications to Coupled Chain Mechanisms
,”
ASME J. Mech. Des.
,
123
(
3
), pp.
359
366
.
5.
Liao
,
Q.
, and
McCarthy
,
J. M.
,
2001
, “
On the Seven Position Synthesis of a 5-SS Platform Linkage
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
74
79
.
6.
Mavroidis
,
C.
,
Lee
,
E.
, and
Alam
,
M.
,
2001
, “
A New Polynomial Solution to the Geometric Design Problem of Spatial RR Robot Manipulators Using the Denavit-Hartenberg Parameters
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
58
67
.
7.
Kihonge
,
J. N.
,
Vance
,
J. M.
, and
Larochelle
,
P. M.
,
2002
, “
Spatial Mechanism Design in Virtual Reality with Networking
,”
ASME J. Mech. Des.
,
124
(
3
), pp.
435
440
.
8.
Chen
,
P.
, and
Roth
,
B.
,
1967
, “
Design Equations for Finitely and Infinitesimally Separated Position Synthesis of Binary Link and Combined Link Chains
,”
ASME J. Eng. Ind.
,
91
, pp.
209
219
.
9.
Nielsen, J., and Roth, B., 1995, “Elimination Methods For Spatial Synthesis,” Computational Kinematics J.-P. Merlet and B. Ravani eds., Kluwer Academic Press, Netherlands.
10.
Verschelde
,
J.
, and
Haegemans
,
A.
,
1993
, “
The GBQ-Algorithm for Constructing Start Systems of Homotopies for Polynomial Systems
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
,
30
(
2
), pp.
583
594
.
11.
Morgan
,
A. P.
,
Sommese
,
A. J.
, and
Wampler
,
C. W.
,
1995
, “
A Product-Decomposition Bound for Bezout Numbers
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
,
32
(
4
), pp.
1308
1325
.
12.
Morgan, A. P., 1987, Solving Polynomial Systems Using Continuation for Scientific and Engineering Problems, Printice-Hall, Englewood Cliffs, NJ.
13.
Wampler
,
C.
,
Morgan
,
A.
, and
Sommese
,
A.
,
1990
, “
Numerical Continuation Methods for Solving Polynomial Systems Arising in Kinematics
,”
ASME J. Mech. Des.
,
112
(
1
), pp.
59
68
.
14.
Li
,
T. Y.
,
1997
, “
Numerical Solution of Multivariate Polynomial Systems by Homotopy Continuation Methods
,”
Acta Numerica
,
6
, pp.
399
436
.
15.
Sommese
,
A. J.
,
Verschelde
,
J.
, and
Wampler
,
C. W.
, 2003, “Advances in Polynomial Continuation for Solving Problems in Kinematics,” ASME J. Mech. Des., in press.
16.
Lee
,
E.
, and
Mavroidis
,
D.
,
2002
, “
Solving the Geometric Design Problem of Spatial 3R Robot Manipulators Using Polynomial Homotopy Continuation
,”
ASME J. Mech. Des.
,
124
(
4
), pp.
652
661
.
17.
Verschelde
,
J.
,
1999
, “
Algorithm 795:PHCpack: A General-Purpose Solver for Polynomial Systems by Homotopy Continuation
,”
ACM Trans. Math. Softw.
,
25
(
2
), pp.
251
276
.
18.
Ryu, S. J., Kim, J. W., Hwang, J. C., Park, C., Cho, H. S., Lee, K., Lee, Y., Cornel, U., Park, F. C., and Kim, J., 1998, “ECLIPSE: An Overactuated Parallel Mechanism for Rapid Machining,” 1998 ASME International Mechanical Engineering Congress and Exposition, Vol. 8, pp. 681–689.
19.
Kim
,
J.
,
Park
,
F. C.
, and
Lee
,
J. M.
,
1999
, “
A New Parallel Mechanism Machine Tool Capable of Five-Face Machining
,”
CIRP Ann.
,
48
(
1
), pp.
337
340
.
20.
Bernshtein
,
D. N.
,
1975
, “
The Number of Roots of a System of Equations
,”
Funct. Anal. Appl.
,
9
(
3
), pp.
183
185
.
21.
Wampler
,
C.
, 2003, “Displacement Analysis of Spherical Mechanisms Having Three or Fewer Loops,” ASME J. Mech. Des., in press.
22.
Mo¨ller
,
H. M.
, and
Stetter
,
H. J.
,
1995
, “
Multivariate Polynomial Equations with Multiple Zeros Solved by Matrix Computations
,”
Numer. Math.
,
70
, pp.
311
329
.
23.
Mourrain
,
B.
,
1998
, “
Computing Isolated Polynomial Roots by Matrix Methods
,”
J. Symb. Comput.
,
26
(
6
), pp.
715
738
.
24.
Morgan
,
A. P.
, and
Sommese
,
A. J.
,
1989
, “
Coefficient Parameter Polynomial Continuation
,”
Appl. Math. Comput.
,
29
, pp.
123
160
.
25.
Su, H.-J., Collins, C., and McCarthy, J. M., 2002, “An Extensible Java Applet for Spatial Linkage Synthesis,” DETC2002/MECH-34371, ASME Design Engineering Technical Conference, Montreal, Canada, Sept. 29–Oct.02.
You do not currently have access to this content.