The present study reports a theoretical analysis on Belleville springs with linearly variable thickness (radially tapered disk springs). The analysis aimed at the solution of two different problems: the realization of a spring with a zone of null slope in the stiffness curve (i.e. with the possibility of having different values of the deflection at a constant load, particularly useful in some regulation processes), and the definition of a disk spring with an almost constant stress state (with the stress linearly variable from the neutral axis to the upper and lower surfaces). Based on the hypothesis of Almen-Laszlo and Curti-Orlando-Podda, the theoretical analysis give the values of the stiffness curve and the stresses as a function of the geometrical parameters and allowed both problems to be resolved, clearly with different values of the geometric parameters. In order to compare the stresses obtained for large deflections, the authors constructed a numerical model which validated the theoretical analysis.

1.
Almen
,
J. O.
, and
Laszlo
,
A.
,
1936
, “
The Uniform Section Disk Spring
,”
ASME
,
58
p. 305
p. 305
.
2.
Bovin, M., and Bahuaud, J, 1974, “Calcul des ressort diaphragmes,” Mecanique, No. 298, October pp. 24–31.
3.
Curti, G., and Orlando, M., 1980, “A New Calculation of Coned Annular Disk Spring,” Transation of the ASME Winter Annual Meeting, Il filo metallico-27 1, pp. 47–52.
4.
Curti, G., Orlando, M., and Podda, G., 1980, “Vereinfachtes Verfahren Zur Berechnung Von Tellerfedeh,” Draht 31 (1980) pp. 789–792- II filo metallico-28, 4, pp. 174–176.
5.
Curti, G., Orlando, M., and Podda, G., 1981, “Experimentelle Nachprufung cines neuen Berechnungsverfahrens,” Draht 31 1980 1 pp. 26–29- II filo metallico-28, 2, pp. 68–70.
6.
Curti, G., Orlando, M., and Podda, G., 1982, “Tensioni e deformazioni in molle a tazza scanalate,” Il filo metallico-29, 1, p. 50.
7.
Curti, G., and Appendino, D., 1982, “Vergleich Von Berechnungsverfahrens Fur Tellerfedern,” Draht 33, pp. 38–40- II filo metallico-30, 2, p. 74.
8.
Curti, G., Podda, G., and Quenda, R., 1983, “Determinazione della caratteristica di molle a disco conico a fascia stretta,” Il filo metallico-IMU Dicembre, 33.
9.
Hubner, W., 1982, “Deformationen und spannungen bei tellerfedern,” Konstruktion-Springer Verlag, pp. 387–392.
10.
Hubner
,
W.
, and
Emmerling
,
F. A.
,
1982
, “
Axialsymmetrische groβe deformationen einer elastischen kegelschale
,”
Zamm
,
62
, pp.
404
406
.
11.
Wagner, W., and Wetzel, M. 1987, “Berechnung von tellerfedern mit hilfe der methode der finiten Elemente,” Konstruktion-Springer Verlag, pp. 147–150.
12.
Brecht
,
W. A.
, and
Wahl
,
A. M.
,
1930
, “
The Radially Tapered Disk Spring
,”
ASME
,
51
, Part 1, p.
45
45
.
13.
Gross S., “Calculation and Design of Metal Springs,” 1966, Chapman and Hall, London, p. 95.
14.
Wernitz
,
W.
,
1954
, “
Die Tellerfeder
,”
Konstruktion
,
6
, pp.
361
376
.
15.
La Rosa, G., Messina, M., and Risitano, A., 1998, “Tangential and Radial Stresses of Variable Thickness Belleville Spring,” Conference on Shell Structures, Theory and Applications Gdansk-Jurats Poland pp.179–180.
16.
Curti, G., and Montanini, R., 1996, “Theoretical, Numerical and Experimental Analysis of Conical Disk Spring,” XXV AIAS Gallipoli, Lecce September, 1, p. 573.
17.
Love, A. E. H., A Treatise on the Mathematical Theory of Elasticity, Cambridge University Press, London, Third edition p. 533
18.
Timoshenko S. and Woinowsky-Krieger S., “Theory of Plates and Shells,” 2 ed. International student edition.
19.
Timoschenko, S., 1936, “Strength of Materials,” 3rd Ed. Vol 11, McMillan. pp. 527–528.
You do not currently have access to this content.