Problems in mechanisms analysis and synthesis and robotics lead naturally to systems of polynomial equations. This paper reviews the state of the art in the solution of such systems of equations. Three well-known methods for solving systems of polynomial equations, viz., Dialytic Elimination, Polynomial Continuation, and Grobner bases are reviewed. The methods are illustrated by means of simple examples. We also review important kinematic analysis and synthesis problems and their solutions using these mathematical procedures.

1.
Wampler
 
C
,
Morgan
 
A.
, and
Sommese
 
A.
,
1990
, “
Numerical Continuation Methods for Solving Polynomial Systems Arising in Kinematics
,”
ASME Journal of Mechanical Design
, Vol.
112
, pp.
59
68
.
2.
Bernstein
 
D. N.
,
1975
, “
The Number of Roots of a System of Equations
,”
Funct. Anal. and Appl.
, Vol.
9
, No.
2
, pp.
183
185
.
3.
Khovanskii
 
A. G.
,
1978
, “
Newton Polyhedra and the Genus of Complete Intersections
,”
Funktsional’nyi Analiz i Ego Prilozheniya
, Vol.
12
, No.
1
, pp.
51
61
, Jan.–Mar.
4.
Kushnirenko, A. G., 1976, “Newton Polytopes and the Bezout Theorem,” Funktsional’nyi Analiz i Ego Prilozheniya, Vol. 10, No. 3, Jul.-Sep.
5.
Canny, J., and Emiris, I., 1993, “An Efficient Algorithm for the Sparse Mixed Resultant,” Proc. 10th Intern. Symp. on Applied Algebraic Algorithms and Error-Correcting Codes (G. Cohen, T. Mora, and O. Moreno, eds.), Lect. Notes in Comp. Science, 263, pp. 89–104, Springer Verlag, May.
6.
Emiris, I., and Canny, J., 1993, “A Practical Method for the Sparse Resultant,” Proc. ACM Intern. Symp. on Symbolic Algebra and Computation, July, pp. 183–192.
7.
Salmon, G., 1964, Lessons Introductory to the Modern Higher Algebra, Chelsea Publishing Co., NY.
8.
Roth, B., 1994, “Computational Advances in Robot Kinematics,” Advances in Robot Kinematics and Computational Geometry, (J. Lenarcic and B. Ravani, eds.), Kluwer Academic Publishers, Dordrecht, pp. 7–16.
9.
Roth, B., 1993, “Computations in Kinematics,” Computational Kinematics, (J. Angeles, G. Hommel, and P. Kovacs, eds.) Kluwer Academic Publishers, Dordrecht, pp. 3–14.
10.
Horowitz
 
E.
, and
Sahni
 
S.
,
1975
, “
On Computing the Exact Determinant of Matrices with Polynomial Entries
,”
J. of the ACM
, Vol.
22
, No.
1
, pp.
38
50
.
11.
Bocher, M., 1924, Introduction to Higher Algebra, Macmillan Publishing Co.
12.
Golub, G., and Van Loan, C., 1982, Matrix Computations, Johns-Hopkins University Press.
13.
Manocha
 
D.
, and
Canny
 
J.
,
1994
, “
Efficient Inverse Kinematics for General 6R Manipulators
,”
IEEE Trans. on Robotics and Automation
, October, Vol.
10
, No.
5
, pp.
648
657
.
14.
Kohli
 
D.
, and
Osvatic
 
M.
,
1993
, “
Inverse Kinematics of General 6R and 5R,P Serial Manipulators
,”
ASME Journal of Mechanical Design
, Vol.
115
, pp.
922
931
.
15.
Duffy
 
J.
, and
Crane
 
C.
,
1980
, “
A Displacement Analysis of the General Spatial 7-Link 7R Mechanism
,”
Mechanism and Machine Theory
, Vol.
15
, pp.
153
169
.
16.
Duffy, J., 1980, Analysis of Mechanisms and Robot Manipulators, Edward Arnold.
17.
Lee
 
H. Y.
, and
Liang
 
C. G.
,
1988
, “
Displacement Analysis of the General Spatial 7-Link 7R Mechanism
,”
Mechanism and Machine Theory
, Vol.
23
, pp.
219
226
.
18.
Raghavan, M., and Roth, B., 1990, “Kinematic Analysis of the 6R Manipulator of General Geometry,” Robotics Research, The Fifth International Symposium, eds. H. Miura and S. Arimoto, MIT Press, pp. 263–270.
19.
Raghavan
 
M.
, and
Roth
 
B.
,
1993
, “
Inverse Kinematics of the General 6R Manipulator and Related Linkages
,”
ASME Journal of Mechanical Design
, Vol.
115
, No.
3
, pp.
502
508
.
20.
Mavroidis
 
C
, and
Roth
 
B.
,
1994
, “
Structural Parameters Which Reduce the Number of Manipulator Configurations
,”
ASME Journal of Mechanical Design
, Vol.
115
, pp.
3
10
.
21.
Mavroidis, C., and Roth, B., 1994, “Analysis and Synthesis of Overconstrained Mechanisms,” Proceedings of the 23rd ASME Mechanisms Conference, Minneapolis, Sept., DE-Vol. 70, Mechanism Synthesis and Analysis, pp. 115–133.
22.
Kohli, D., and Osvatic, M., 1992, “Inverse Kinetics of General 4R2P, 3R3P, 4R1C, 2R2C, and 3C Manipulators,” Proceedings of the 22nd ASME Mechanisms Conference, Scottsdale, Sep., DE-Vol. 45, pp. 129–137.
23.
Ghazvini, M., 1993, “Reducing the Inverse Kinematics of Manipulators to the Solution of a Generalized Eigenproblem,” Computational Kinematics, (J. Angeles, G. Hommel, and P. Kovacs, eds.) Kluwer Academic Publishers, Dordrecht, pp. 15–26.
24.
Waldron, K., Raghavan, M., and Roth, B., 1989, “Kinematics of a Hybrid Series-Parallel Manipulation System,” ASME Journal of Dynamic Systems, Measurement, and Control, June, pp. 211–221.
25.
Lee, K.-M., and Shah, D. K., 1987, “Kinematic Analysis of a Three Degrees of Freedom In-parallel Actuated Manipulator,” Proceedings of the 1987 IEEE Int’l Conf. on Robotics and Automation, Vol. 1, pp. 345–350.
26.
Husain
 
M.
, and
Waldron
 
K.
,
1994
, “
Position Kinematics of a Three-Limbed Mixed Mechanism
,”
ASME Journal of Mechanical Design
, Vol.
116
, pp.
924
929
.
27.
Lin
 
W.
,
Griffis
 
M.
, and
Duffy
 
J.
,
1992
, “
Forward Displacement Analyses of the 4-4 Stewart Platforms
,”
ASME Journal of Mechanical Design
, Vol.
114
, pp.
444
450
.
28.
Zhang
 
C.
, and
Song
 
S.
,
1994
, “
Forward Position Analysis of Nearly General Stewart Platforms
,”
ASME Journal of Mechanical Design
, Vol.
116
, No.
1
, pp.
54
60
.
29.
Innocenti
 
C.
, and
Parenti-Castelli
 
V.
,
1993
, “
Closed-Form Direct Position Analysis of a 5-5 Parallel Mechanism
,”
ASME Journal of Mechanical Design
, Vol.
115
, Sep. pp.
515
521
.
30.
Raghavan
 
M.
,
1993
, “
The Stewart Platform of General Geometry has 40 Configurations
,”
ASME Journal of Mechanical Design
, Vol.
115
, No.
2
, June, pp.
277
282
.
31.
Mourrain, B., 1993, “The 40 Generic Positions of a Parallel Robot,” Proc. ACM Intern. Symp. on Symbolic and Algebr. Computation, pp. 173–182, Kiev, July.
32.
Lazard, D., 1993, “On the Representation of Rigid-Body Motions and its Applications to Generalized Platform Manipulators,” Computational Kinematics, (J. Angeles, G. Hommel, and P. Kovacs, eds.) Kluwer Academic Publishers, Dordrecht, pp. 175–181.
33.
Husty, M., 1994, “An Algorithm for Solving the Direct Kinematic of Stewart-Gough-type Platforms,” preprint, McGill Research Centre for Intelligent Machines, June 30.
34.
Bottema, O., and Roth, B., 1990, Theoretical Kinematics, North Holland, 1979 (reprinted by Dover Publications, NY).
35.
Roth
 
B.
,
1967
, “
The Kinematics of Motion through Finitely Separated Positions
,”
ASME Journal of Applied Mechanics
, Vol.
34
, No.
3
, pp.
591
598
.
36.
Innocenti, C., 1994, “Polynomial Solution of the Spatial Burmester Problem,” Proceedings of the 23rd ASME Mechanisms Conference, Minneapolis, Sep., DE-Vol. 70, Mechanism synthesis and analysis, pp. 161–166.
37.
Artin, E., 1955, Elements of Algebraic Geometry, lecture notes from spring semester—1955 at New York University, (notes by G. Bachman), (available at Stanford University Mathematic Library).
38.
van der Waerden, B. L., 1964, Modern Algebra, Vol. 2, Frederick Ungar Pub. Co.
39.
Macaulay, F. S., 1964, The Algebraic Theory of Modular Systems, Stechert-Hafner Service Agency.
40.
Gelfand
 
I. M.
,
Kapranov
 
M. M.
, and
Zelevinsky
 
A. V.
,
1991
, “
Discriminants of Polynomials in Several Variables and Triangulations of Newton Polytopes
,”
Leningrad Math. J.
, Vol.
2
, No.
3
, pp.
449
505
(Translated from Algebra i Analiz, Vol. 2, 1990, pp. 1–62).
41.
Gelfand, I. M., Kapranov, M. M., and Zelevinsky, A. V., 1994, Discriminants and Resultants, Birkhauser, Boston.
42.
Pedersen
 
P.
, and
Sturmfels
 
B.
,
1993
, “
Product Formulas for Resultants and Chow Forms
,”
Math. Zeitschrifl.
, Vol.
214
, pp.
377
396
.
43.
Morgan
 
A.
, “
A Transformation to Avoid Solutions at Infinity for Polynomial Systems
,”
Appl. Math. Comput.
, Vol.
18
, pp.
77
86
.
44.
Roth
 
B.
, and
Freudenstein
 
F.
,
1963
, “
Synthesis of Path-Generating Mechanisms by Numerical Methods
,”
ASME Journal of Engineering for Industry
, Vol.
85
, pp.
298
307
.
45.
Tsai
 
L-W.
, and
Morgan
 
A.
,
1985
, “
Solving the Kinematics of the Most General Six- and Five-Degree-of-Freedom Manipulators by Continuation Methods
,”
ASME Journal of Mechanisms, Transmissions, and Automation in Design
, Vol.
107
, pp.
189
200
.
46.
Wampler
 
C.
,
Morgan
 
A.
, and
Sommese
 
A.
,
1992
, “
Complete Solution of the Nine-Point Path Synthesis Problem for Four-bar Linkages
,”
ASME Journal of Mechanical Design
, Vol.
114
, March, pp.
153
159
.
47.
Buchberger, B., 1985, “Grobner Bases: An Algorithmic Method in Polynomial Ideal Theory,” Chapter 6, Multidimensional System Theory, (N. K. Bose, ed.), D. Reidel Pub. Co.
48.
Cox, D., Little, J., and O’Shea, D., 1992, Ideals, Varieties, and Algorithms, Springer-Verlag.
49.
Hironaka
 
H.
,
1964
, “
Resolution of Singularities of an Algebraic Variety Over a Field of Characteristic Zero: 1, 2
,”
Annals of Math.
, Vol.
79
, pp.
109
326
.
50.
Kapur, D., and Lakshman, Y. N., 1992, “Elimination Methods: An Introduction,” Symbolic and Numerical Computation for Artificial Intelligence, (B. Donald, D. Kapur, and J. Mundy, eds.) pp. 45–89, Academic Press.
51.
Kutzler
 
B.
, and
Stifter
 
S.
,
1986
, “
On the Application of Buchberger’s Algorithm to Automated Geometry Theorem Proving
,”
Jour. of Symb. Comp.
, Vol.
2
, pp.
389
397
.
52.
Faugere, J. C, and Lazard, D., 1995, “The Combinatorial Classes of Parallel Manipulators,” Mechanism and Machine Theory, in press.
53.
Wampler
 
C.
, and
Morgan
 
A.
,
1991
, “
Solving the 6R Inverse Position Problem Using a Generic-Case Solution Methodology
,”
Mechanism and Machine Theory
, Vol.
26
, pp.
91
106
.
54.
Wampler, C, 1994, “Forward Displacement Analysis of General Six-in-Parallel SPS (Stewart) Platform Manipulators using Soma Coordinates,” GM R & D Publication 8179, May (submitted to Mechanism and Machine Theory).
55.
Zanganeh, K. E., and Angeles, J., 1993, “The Semigraphical Solution of the Direct Kinematics of General Platform Manipulators,” Computational Kinematics (J. Angeles, G. Hommel, and P. Kovacs, eds.) Kluwer Academic Publishers, Dordrecht, pp. 165–174.
56.
Lazard, D., and Merlet, J. P., 1994, “The (True) Stewart Platform has 12 Configurations,” Proceedings of the 1994 IEEE Robotics and Automation Conference, San Diego, May, pp. 2160–2165.
This content is only available via PDF.
You do not currently have access to this content.