Necessary and sufficient conditions for Lyapunov stability, semistability and asymptotic stability of matrix second-order systems are given in terms of the coefficient matrices. Necessary and sufficient conditions for Lyapunov stability and instability in the absence of viscous damping are also given. These are used to derive several known stability and instability criteria as well as a few new ones. In addition, examples are given to illustrate the stability conditions.
Issue Section:
Research Papers
1.
Ahmadian
M.
Inman
D. J.
1985
, “On the Stability of General Dynamic Systems Using a Liapunov’s Direct Method Approach
,” Computers & Structures
, Vol. 20
, pp. 287
–292
.2.
Ahmadian
M.
Inman
D. J.
1986
, “Some Stability Results for General Linear Lumped-Parameter Systems
,” ASME Journal of Applied Mechanics
, Vol. 53
, pp. 10
–14
.3.
Barkwell
L.
Lancaster
P.
1992
, “Overdamped and Gyroscopic Vibrating Systems
,” ASME Journal of Applied Mechanics
, Vol. 59
, pp. 176
–181
.4.
Bloch
A. M.
Krishnaprasad
P. S.
Marsden
J. E.
Ratiu
T. S.
1994
, “Dissipation Induced Instabilities
,” Annales de l’Institut Henri Poincare
, Vol. 11
, pp. 37
–90
.5.
Campbell
S. L.
Rose
N. J.
1979
, “Singular Perturbation of Autonomous Linear Systems
,” SIAM Journal of Math. Analysis
, Vol. 10
, pp. 542
–551
.6.
Chetayev, N. G., 1961, The Stability of Motion, Pergamon Press, New York, pp. 95–100.
7.
Connell
G. M.
1969
, “Asymptotic Stability of Second-Order Linear Systems with Semidefinite Damping
,” AIAA Journal
, Vol. 7
, pp. 1185
–1187
.8.
Duffin
R. J.
1955
, “A Minimax Theory for Overdamped Networks
,” Journal of Rational Mechanics and Analysis
, Vol. 4
, pp. 221
–233
.9.
Fawzy
I.
1979
, “A Simplified Stability Criterion for Nonconservative Systems
,” ASME Journal of Applied Mechanics
, Vol. 46
, pp. 423
–426
.10.
Gardiner
J. D.
1992
, “Stabilizing Control for Second Order Models and Positive Real Systems
,” Journal of Guidance
, Vol. 15
, pp. 280
–282
.11.
Greenlee
W. M.
1975
, “Lyapunov Stability of Linear Gyroscopic Systems
,” Utilitas Mathematica
, Vol. 8
, pp. 225
–231
.12.
Greenwood, D. T., 1977, Classical Dynamics, Prentice Hall, Englewood Cliffs, N.J., pp. 127–129.
13.
Hagedorn
P.
1975
, “U¨ber die Instabilita¨t konservativer Systeme mit gyroskopischen Kra¨ften
,” Archive for Rational Mechanics and Analysis
, Vol. 58
, pp. 1
–9
.14.
Horn, R. A., and Johnson, C. R., 1985, Matrix Analysis, Cambridge University Press, New York, p. 472.
15.
Hughes
P. C.
Gardner
L. T.
1975
, “Asymptotic Stability of Linear Stationary Systems
,” ASME Journal of Applied Mechanics
, Vol. 42
, pp. 228
–229
.16.
Huseyin
K.
1976
, “Vibrations and Stability of Mechanical Systems
,” Shock and Vibration Digest
, Vol. 8
, No. 4
, pp. 56
–66
.17.
Huseyin, K., 1978, Vibrations and Stability of Multiple Parameter Systems, Sijthoff and Nordhoff, Alphen, p. 115.
18.
Huseyin
K.
1981
, “Vibrations and Stability of Mechanical Systems: II
,” Shock and Vibration Digest
, Vol. 13
, No. 1
, pp. 21
–29
.19.
Huseyin
K.
Hagedorn
P.
Teschner
W.
1983
, “On the Stability of Linear Conservative Gyroscopic Systems
,” Journal of Applied Mathematics and Physics
, Vol. 34
, pp. 807
–815
.20.
Huseyin
K.
1984
, “Vibrations and Stability of Mechanical Systems: III
,” Shock and Vibration Digest
, Vol. 16
, No. 7
, pp. 15
–22
.21.
Huseyin
K.
1991
, “On the Stability Criteria for Conservative Gyroscopic Systems
,” ASME Journal of Vibration and Acoustics
, Vol. 113
, pp. 58
–61
.22.
Inman
D. J.
1983
, “Dynamics of Asymmetric Nonconservative Systems
,” ASME Journal of Applied Mechanics
, Vol. 50
, pp. 199
–203
.23.
Inman
D. J.
1988
, “A Sufficient Condition for the Stability of Conservative Gyroscopic Systems
,” ASME Journal of Applied Mechanics
, Vol. 55
, pp. 895
–898
.24.
Juang
J.-N.
Phan
M.
1992
, “Robust Controller Designs for Second-Order Dynamic Systems: A Virtual Passive Approach
,” Journal of Guidance, Control, and Dynamics
, Vol. 15
, pp. 1192
–1198
.25.
Kato, T., 1984, Perturbation Theory for Linear Operators, Springer Verlag, New York, pp. 41–43.
26.
Kliem
W.
Pommer
C.
1986
, “On the Stability of Linear Nonconservative Systems
,” Quarterly of Applied Mathematics
, Vol. 43
, pp. 457
–461
.27.
Knoblauch, J., and Inman, D. J., “On Stability Conditions for Conservative Gyroscopic Systems,” preprint.
28.
Lancaster, P., 1966, Lambda Matrices and Vibrating Systems, Pergamon Press, New York, pp. 116–142.
29.
Laub
A. J.
Meyer
K.
1974
, “Canonical Forms for Symplectic and Hamiltonian Matrices
,” Celestial Mechanics
, Vol. 9
, pp. 213
–238
.30.
Ly
B. L.
1992
, “Stability of Linear Conservative Gyroscopic Systems
,” ASME Journal of Applied Mechanics
, Vol. 59
, pp. 236
–237
.31.
Mingori
D. L.
1970
, “A Stability Theorem for Mechanical Systems With Constraint Damping
,” ASME Journal of Applied Mechanics
, Vol. 37
, pp. 253
–257
.32.
Moran
T. J.
1970
, “A Simple Alternative to the Routh-Hurwitz Criterion for Symmetric Systems
,” ASME Journal of Applied Mechanics
, Vol. 37
, pp. 1168
–1170
.33.
Morris
K. A.
Juang
J.-N.
1994
, “Dissipative Controller Designs for Second-Order Dynamic Systems
,” IEEE Transactions on Automatic Control
, Vol. 39
, pp. 1056
–1063
.34.
Plaut
R. H.
1976
, “Alternative Formulations for Discrete Gyroscopic Eigenvalue Problems
,” AIAA Journal
, Vol. 14
, pp. 431
–435
.35.
Roberson
R. E.
1968
, “Notes on the Thomson-Tait-Chetaev Stability Theorem
,” The Journal of the Astronautical Sciences
, Vol. 15
, pp. 319
–324
.36.
Shieh
L. S.
Mehio
M. M.
Dib
H. M.
1987
, “Stability of the Second Order Matrix Polynomial
,” IEEE Transactions on Automatic Control
, Vol. AC-32
, pp. 231
–233
.37.
Walker
J. A.
1970
, “On the Stability of Linear Discrete Dynamic Systems
,” ASME Journal of Applied Mechanics
, Vol. 37
, pp. 271
–275
.38.
Walker
J. A.
Schmitendorf
W. E.
1973
, “A Simple Test for Asymptotic Stability in Partially Dissipative Symmetric Systems
,” ASME Journal of Applied Mechanics
, Vol. 40
, pp. 1120
–1121
.39.
Walker
J. A.
1991
, “Stability of Linear Conservative Gyroscopic Systems
,” ASME Journal of Applied Mechanics
, Vol. 58
, pp. 229
–232
.40.
Wimmer
H. K.
1974
, “Inertia Theorems for Matrices, Controllability, and Linear Vibrations
,” Linear Algebra and its Applications
, Vol. 8
, pp. 337
–343
.41.
Wu
J.-W.
Tsao
T.-C.
1994
, “A Sufficient Condition for Linear Conservative Gyroscopic Sytems
,” ASME Journal of Applied Mechanics
, Vol. 61
, pp. 715
–717
.42.
Zajac
E. E.
1964
, “The Kelvin-Tait-Chataev Theorem and Further Extensions
,” The Journal of the Astronautical Sciences
, Vol. 11
, pp. 46
–49
.43.
Zajac
E. E.
1965
, “Comments on ‘Stability of Damped Mechanical Systems’ and a Further Extension
,” AIAA Journal
, Vol. 3
, pp. 1794
–1750
.
This content is only available via PDF.
Copyright © 1995
by The American Society of Mechanical Engineers
You do not currently have access to this content.