Necessary and sufficient conditions for Lyapunov stability, semistability and asymptotic stability of matrix second-order systems are given in terms of the coefficient matrices. Necessary and sufficient conditions for Lyapunov stability and instability in the absence of viscous damping are also given. These are used to derive several known stability and instability criteria as well as a few new ones. In addition, examples are given to illustrate the stability conditions.

1.
Ahmadian
M.
, and
Inman
D. J.
,
1985
, “
On the Stability of General Dynamic Systems Using a Liapunov’s Direct Method Approach
,”
Computers & Structures
, Vol.
20
, pp.
287
292
.
2.
Ahmadian
M.
, and
Inman
D. J.
,
1986
, “
Some Stability Results for General Linear Lumped-Parameter Systems
,”
ASME Journal of Applied Mechanics
, Vol.
53
, pp.
10
14
.
3.
Barkwell
L.
, and
Lancaster
P.
,
1992
, “
Overdamped and Gyroscopic Vibrating Systems
,”
ASME Journal of Applied Mechanics
, Vol.
59
, pp.
176
181
.
4.
Bloch
A. M.
,
Krishnaprasad
P. S.
,
Marsden
J. E.
, and
Ratiu
T. S.
,
1994
, “
Dissipation Induced Instabilities
,”
Annales de l’Institut Henri Poincare
, Vol.
11
, pp.
37
90
.
5.
Campbell
S. L.
, and
Rose
N. J.
,
1979
, “
Singular Perturbation of Autonomous Linear Systems
,”
SIAM Journal of Math. Analysis
, Vol.
10
, pp.
542
551
.
6.
Chetayev, N. G., 1961, The Stability of Motion, Pergamon Press, New York, pp. 95–100.
7.
Connell
G. M.
,
1969
, “
Asymptotic Stability of Second-Order Linear Systems with Semidefinite Damping
,”
AIAA Journal
, Vol.
7
, pp.
1185
1187
.
8.
Duffin
R. J.
,
1955
, “
A Minimax Theory for Overdamped Networks
,”
Journal of Rational Mechanics and Analysis
, Vol.
4
, pp.
221
233
.
9.
Fawzy
I.
,
1979
, “
A Simplified Stability Criterion for Nonconservative Systems
,”
ASME Journal of Applied Mechanics
, Vol.
46
, pp.
423
426
.
10.
Gardiner
J. D.
,
1992
, “
Stabilizing Control for Second Order Models and Positive Real Systems
,”
Journal of Guidance
, Vol.
15
, pp.
280
282
.
11.
Greenlee
W. M.
,
1975
, “
Lyapunov Stability of Linear Gyroscopic Systems
,”
Utilitas Mathematica
, Vol.
8
, pp.
225
231
.
12.
Greenwood, D. T., 1977, Classical Dynamics, Prentice Hall, Englewood Cliffs, N.J., pp. 127–129.
13.
Hagedorn
P.
,
1975
, “
U¨ber die Instabilita¨t konservativer Systeme mit gyroskopischen Kra¨ften
,”
Archive for Rational Mechanics and Analysis
, Vol.
58
, pp.
1
9
.
14.
Horn, R. A., and Johnson, C. R., 1985, Matrix Analysis, Cambridge University Press, New York, p. 472.
15.
Hughes
P. C.
, and
Gardner
L. T.
,
1975
, “
Asymptotic Stability of Linear Stationary Systems
,”
ASME Journal of Applied Mechanics
, Vol.
42
, pp.
228
229
.
16.
Huseyin
K.
,
1976
, “
Vibrations and Stability of Mechanical Systems
,”
Shock and Vibration Digest
, Vol.
8
, No.
4
, pp.
56
66
.
17.
Huseyin, K., 1978, Vibrations and Stability of Multiple Parameter Systems, Sijthoff and Nordhoff, Alphen, p. 115.
18.
Huseyin
K.
,
1981
, “
Vibrations and Stability of Mechanical Systems: II
,”
Shock and Vibration Digest
, Vol.
13
, No.
1
, pp.
21
29
.
19.
Huseyin
K.
,
Hagedorn
P.
, and
Teschner
W.
,
1983
, “
On the Stability of Linear Conservative Gyroscopic Systems
,”
Journal of Applied Mathematics and Physics
, Vol.
34
, pp.
807
815
.
20.
Huseyin
K.
,
1984
, “
Vibrations and Stability of Mechanical Systems: III
,”
Shock and Vibration Digest
, Vol.
16
, No.
7
, pp.
15
22
.
21.
Huseyin
K.
,
1991
, “
On the Stability Criteria for Conservative Gyroscopic Systems
,”
ASME Journal of Vibration and Acoustics
, Vol.
113
, pp.
58
61
.
22.
Inman
D. J.
,
1983
, “
Dynamics of Asymmetric Nonconservative Systems
,”
ASME Journal of Applied Mechanics
, Vol.
50
, pp.
199
203
.
23.
Inman
D. J.
,
1988
, “
A Sufficient Condition for the Stability of Conservative Gyroscopic Systems
,”
ASME Journal of Applied Mechanics
, Vol.
55
, pp.
895
898
.
24.
Juang
J.-N.
, and
Phan
M.
,
1992
, “
Robust Controller Designs for Second-Order Dynamic Systems: A Virtual Passive Approach
,”
Journal of Guidance, Control, and Dynamics
, Vol.
15
, pp.
1192
1198
.
25.
Kato, T., 1984, Perturbation Theory for Linear Operators, Springer Verlag, New York, pp. 41–43.
26.
Kliem
W.
, and
Pommer
C.
,
1986
, “
On the Stability of Linear Nonconservative Systems
,”
Quarterly of Applied Mathematics
, Vol.
43
, pp.
457
461
.
27.
Knoblauch, J., and Inman, D. J., “On Stability Conditions for Conservative Gyroscopic Systems,” preprint.
28.
Lancaster, P., 1966, Lambda Matrices and Vibrating Systems, Pergamon Press, New York, pp. 116–142.
29.
Laub
A. J.
, and
Meyer
K.
,
1974
, “
Canonical Forms for Symplectic and Hamiltonian Matrices
,”
Celestial Mechanics
, Vol.
9
, pp.
213
238
.
30.
Ly
B. L.
,
1992
, “
Stability of Linear Conservative Gyroscopic Systems
,”
ASME Journal of Applied Mechanics
, Vol.
59
, pp.
236
237
.
31.
Mingori
D. L.
,
1970
, “
A Stability Theorem for Mechanical Systems With Constraint Damping
,”
ASME Journal of Applied Mechanics
, Vol.
37
, pp.
253
257
.
32.
Moran
T. J.
,
1970
, “
A Simple Alternative to the Routh-Hurwitz Criterion for Symmetric Systems
,”
ASME Journal of Applied Mechanics
, Vol.
37
, pp.
1168
1170
.
33.
Morris
K. A.
, and
Juang
J.-N.
,
1994
, “
Dissipative Controller Designs for Second-Order Dynamic Systems
,”
IEEE Transactions on Automatic Control
, Vol.
39
, pp.
1056
1063
.
34.
Plaut
R. H.
,
1976
, “
Alternative Formulations for Discrete Gyroscopic Eigenvalue Problems
,”
AIAA Journal
, Vol.
14
, pp.
431
435
.
35.
Roberson
R. E.
,
1968
, “
Notes on the Thomson-Tait-Chetaev Stability Theorem
,”
The Journal of the Astronautical Sciences
, Vol.
15
, pp.
319
324
.
36.
Shieh
L. S.
,
Mehio
M. M.
, and
Dib
H. M.
,
1987
, “
Stability of the Second Order Matrix Polynomial
,”
IEEE Transactions on Automatic Control
, Vol.
AC-32
, pp.
231
233
.
37.
Walker
J. A.
,
1970
, “
On the Stability of Linear Discrete Dynamic Systems
,”
ASME Journal of Applied Mechanics
, Vol.
37
, pp.
271
275
.
38.
Walker
J. A.
, and
Schmitendorf
W. E.
,
1973
, “
A Simple Test for Asymptotic Stability in Partially Dissipative Symmetric Systems
,”
ASME Journal of Applied Mechanics
, Vol.
40
, pp.
1120
1121
.
39.
Walker
J. A.
,
1991
, “
Stability of Linear Conservative Gyroscopic Systems
,”
ASME Journal of Applied Mechanics
, Vol.
58
, pp.
229
232
.
40.
Wimmer
H. K.
,
1974
, “
Inertia Theorems for Matrices, Controllability, and Linear Vibrations
,”
Linear Algebra and its Applications
, Vol.
8
, pp.
337
343
.
41.
Wu
J.-W.
, and
Tsao
T.-C.
,
1994
, “
A Sufficient Condition for Linear Conservative Gyroscopic Sytems
,”
ASME Journal of Applied Mechanics
, Vol.
61
, pp.
715
717
.
42.
Zajac
E. E.
,
1964
, “
The Kelvin-Tait-Chataev Theorem and Further Extensions
,”
The Journal of the Astronautical Sciences
, Vol.
11
, pp.
46
49
.
43.
Zajac
E. E.
,
1965
, “
Comments on ‘Stability of Damped Mechanical Systems’ and a Further Extension
,”
AIAA Journal
, Vol.
3
, pp.
1794
1750
.
This content is only available via PDF.
You do not currently have access to this content.