Abstract

Uses of functionally graded materials (FGMs) are increasing owing to recent development in manufacturing technologies. Large deflection of beams that made of nonlinearly elastic, Ludwick's type of material, and also FGMs has received considerable critical attention during recent years. However, the precise effect of a number of laminae on both vertical and horizontal deflection of the beam in the finite element analysis (FEA) is unknown. Here, we examined the large deflections of a cantilever beam that was subjected to various loading conditions and made of nonlinearly elastic, modified Ludwick's type of material using FEA. The direction-dependent material properties in the functionally graded material and nonlinearity from modified Ludwick's law are combined in the analysis using Marlow's material model. Our results show that the gradient function and the number of laminae have significant effects on normal stress distribution along the horizontal axis and both vertical and horizontal deflection of the beam.

References

1.
Simsek
,
M.
,
2009
, “
Static Analysis of a Functionally Graded Beam Under a Uniformly Distributed Load by Ritz Method
,”
Int. J. Eng. Appl. Sci.
,
1
(
3
), pp.
1
11
.
2.
Candaş
,
A.
,
Oterkus
,
E.
, and
İmrak
,
C. E.
,
2021
, “
Peridynamic Simulation of Dynamic Fracture in Functionally Graded Materials Subjected to Impact Load
,”
Eng. Comput.
doi.org/10.1007/s00366-021-01540-2
3.
Sankar
,
B. V.
,
2001
, “
An Elasticity Solution for Functionally Graded Beams
,”
Compos. Sci. Technol.
,
61
(
5
), pp.
689
696
.
4.
Zhong
,
Z.
, and
Yu
,
T.
,
2006
, “
Two-Dimensional Analysis of Functionally Graded Beams
,”
AIAA J.
,
44
(
12
), pp.
3160
3164
.
5.
Zhong
,
Z.
, and
Yu
,
T.
,
2007
, “
Analytical Solution of a Cantilever Functionally Graded Beam
,”
Compos. Sci. Technol.
,
67
(
3–4
), pp.
481
488
.
6.
Li
,
X. F.
,
2008
, “
A Unified Approach for Analyzing Static and Dynamic Behaviors of Functionally Graded Timoshenko and Euler-Bernoulli Beams
,”
J. Sound Vib.
,
318
(
4–5
), pp.
1210
1229
.
7.
Pitakthapanaphong
,
S.
, and
Busso
,
E. P.
,
2002
, “
Self-Consistent Elastoplastic Stress Solutions for Functionally Graded Material Systems Subjected to Thermal Transients
,”
J. Mech. Phys. Solids
,
50
(
4
), pp.
695
716
.
8.
Nie
,
G. J.
,
Zhong
,
Z.
, and
Chen
,
S.
,
2013
, “
Analytical Solution for a Functionally Graded Beam With Arbitrary Graded Material Properties
,”
Compos. Part B Eng.
,
44
(
1
), pp.
274
282
.
9.
Yang
,
Z.
,
Oterkus
,
E.
, and
Oterkus
,
S.
,
2021
, “
Peridynamic Formulation for Higher Order Functionally Graded Beams
,”
Thin-Walled Struct.
,
160
, pp.
1
16
.
10.
Silling
,
S. A.
,
2000
, “
Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces
,”
J. Mech. Phys. Solids
,
48
(
1
), pp.
175
209
.
11.
Silling
,
S. A.
, and
Askari
,
E.
,
2005
, “
A Meshfree Method Based on the Peridynamic Model of Solid Mechanics
,”
Comput. Struct.
,
83
(
17–18
), pp.
1526
1535
.
12.
Candaş
,
A.
,
Oterkus
,
E.
, and
İmrak
,
C. E.
,
2021
, “
Dynamic Crack Propagation and Its Interaction With Micro-Cracks in an Impact Problem
,”
ASME J. Eng. Mater. Technol.
,
143
(
1
), p.
011003
.
13.
Bang
,
D. J.
,
Ince
,
A.
,
Oterkus
,
E.
, and
Oterkus
,
S.
,
2021
, “
Crack Growth Modeling and Simulation of a Peridynamic Fatigue Model Based on Numerical and Analytical Solution Approaches
,”
Theor. Appl. Fract. Mech.
,
114
, pp.
1
14
.
14.
Zhu
,
N.
,
Kochan
,
C.
,
Oterkus
,
E.
, and
Oterkus
,
S.
,
2021
, “
Fatigue Analysis of Polycrystalline Materials Using Peridynamic Theory With a Novel Crack Tip Detection Algorithm
,”
Ocean Eng.
,
222
, pp.
1
11
.
15.
Ozdemir
,
M.
,
Kefal
,
A.
,
Imachi
,
M.
,
Tanaka
,
S.
, and
Oterkus
,
E.
,
2020
, “
Dynamic Fracture Analysis of Functionally Graded Materials Using Ordinary State-Based Peridynamics
,”
Compos. Struct.
,
244
, pp.
1
15
.
16.
Pascon
,
J. P.
,
2016
, “
Finite Element Analysis of Flexible Functionally Graded Beams With Variable Poisson’s Ratio
,”
Eng. Comput.
,
33
(
8
), pp.
2421
2447
.
17.
Chucheepsakul
,
S.
,
Buncharoen
,
S.
, and
Wang
,
C. M.
,
1994
, “
Large Deflection of Beams Under Moment Gradient
,”
J. Eng. Mech.
,
120
(
9
), pp.
1848
1860
.
18.
Wang
,
C. M.
,
Lam
,
K. Y.
,
He
,
X. Q.
, and
Chucheepsakul
,
S.
,
1997
, “
Large Deflections of an End Supported Beam Subjected to a Point Load
,”
Int. J. Non. Linear. Mech.
,
32
(
1
), pp.
63
72
.
19.
Lee
,
K.
,
2002
, “
Large Deflections of Cantilever Beams of Non-Linear Elastic Material Under a Combined Loading
,”
Int. J. Non. Linear. Mech.
,
37
(
3
), pp.
439
443
.
20.
Lewis
,
G.
, and
Monasa
,
F.
,
1981
, “
Large Deflections of Cantilever Beams of Nonlinear Materials
,”
Comput. Struct.
,
14
(
5–6
), pp.
357
360
.
21.
Lewis
,
G.
, and
Monasa
,
F.
,
1982
, “
Large Deflections of Cantilever Beams of Non-linear Materials of the Ludwick Type Subjected to an End Moment
,”
Int. J. Non. Linear. Mech.
,
17
(
1
), pp.
1
6
.
22.
Baykara
,
C.
,
Güven
,
U.
, and
Bayer
,
I.
,
2005
, “
Large Deflections of a Cantilever Beam of Nonlinear Bimodulus Material Subjected to an End Moment
,”
J. Reinf. Plast. Compos.
,
24
(
12
), pp.
1321
1326
.
23.
Jung
,
J. h.
, and
Kang
,
T. J.
,
2005
, “
Large Deflection Analysis of Fibers With Nonlinear Elastic Properties
,”
Text. Res. J.
,
75
(
10
), pp.
715
723
.
24.
Shatnawi
,
A. S.
, and
Al-Sadder
,
S.
,
2007
, “
Exact Large Deflection Analysis of Nonprismatic Cantilever Beams of Nonlinear Bimodulus Material Subjected to Tip Moment
,”
J. Reinf. Plast. Compos.
,
26
(
12
), pp.
1253
1268
.
25.
Brojan
,
M.
,
Videnic
,
T.
, and
Kosel
,
F.
,
2009
, “
Large Deflections of Nonlinearly Elastic Non-Prismatic Cantilever Beams Made From Materials Obeying the Generalized Ludwick Constitutive Law
,”
Meccanica
,
44
(
6
), pp.
733
739
.
26.
Kocatürk
,
T.
,
Şimşek
,
M.
, and
Akbaş
,
S. D.
,
2011
, “
Large Displacement Static Analysis of a Cantilever Timoshenko Beam Composed of Functionally Graded Material
,”
Sci. Eng. Compos. Mater.
,
18
(
1–2
), pp.
21
34
.
27.
Kang
,
Y. A.
, and
Li
,
X. F.
,
2009
, “
Bending of Functionally Graded Cantilever Beam With Power-Law Non-Linearity Subjected to an End Force
,”
Int. J. Non. Linear. Mech.
,
44
(
6
), pp.
696
703
.
28.
Kang
,
Y. A.
, and
Li
,
X. F.
,
2010
, “
Large Deflections of a Non-linear Cantilever Functionally Graded Beam
,”
J. Reinf. Plast. Compos.
,
29
(
12
), pp.
1761
1774
.
29.
Sitar
,
M.
,
Kosel
,
F.
, and
Brojan
,
M.
,
2014
, “
Large Deflections of Nonlinearly Elastic Functionally Graded Composite Beams
,”
Arch. Civ. Mech. Eng.
,
14
(
4
), pp.
700
709
.
30.
Borboni
,
A.
, and
De Santis
,
D.
,
2014
, “
Large Deflection of a Non-linear, Elastic, Asymmetric Ludwick Cantilever Beam Subjected to Horizontal Force, Vertical Force and Bending Torque at the Free End
,”
Meccanica
,
49
(
6
), pp.
1327
1336
.
31.
Borboni
,
A.
,
Santis
,
D. D.
,
Solazzi
,
L.
,
Villafañe
,
J. H.
, and
Faglia
,
R.
,
2016
, “
Ludwick Cantilever Beam in Large Deflection Under Vertical Constant Load
,”
Open Mech. Eng. J.
,
10
(
1
), pp.
23
37
.
32.
Zhang
,
L.
,
Wang
,
J.
, and
Zhou
,
Y. H.
,
2016
, “
Large Deflection and Post-Buckling Analysis of Non-Linearly Elastic Rods by Wavelet Method
,”
Int. J. Non. Linear. Mech.
,
78
(
1
), pp.
45
52
.
33.
Eroglu
,
U.
,
2016
, “
Large Deflection Analysis of Planar Curved Beams Made of Functionally Graded Materials Using Variational Iterational Method
,”
Compos. Struct.
,
136
(
1
), pp.
204
216
.
34.
Demirbas
,
M. D.
,
Xu
,
X.
,
Carrera
,
E.
,
Yang
,
H.
, and
Augello
,
R.
,
2020
, “
Evaluation of Stress Distributions in the Geometrical Nonlinear Regime of Functionally Graded Structures
,”
Compos. Struct.
,
246
, pp.
1
10
.
35.
Marlow
,
R. S.
,
2003
, “
A General First-Invariant Hyperelastic Constitutive Model
,”
Proceedings of the Third European Conference on Constitutive Models for Rubber III
,
J.
Busfield
and
A.
Muhr
, eds., London, UK, vol. 1, pp.
157
160
.
36.
Smith
,
M.
,
2009
,
ABAQUS/Standard User’s Manual, Version 6.9, Dassault Systemes Simulia Corp, Providence, RI
.
37.
Karamanlı
,
A.
,
2017
, “
Elastostatic Analysis of Two-Directional Functionally Graded Beams Using Various Beam Theories and Symmetric Smoothed Particle Hydrodynamics Method
,”
Compos. Struct.
,
160
(
1
), pp.
653
669
.
You do not currently have access to this content.